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Key Points: Anisotropy
A model to generate rainfall fields from
areal statistics is built by augmenting P. Cantet" . B. Renard® yJOAL Finel, and P. Arnaud®
an existing model with spatial
heterogeneity and anisotropy 'HYDRIS Hydrologic, Montpellier, France, "/RECOVER, INRAE. Aix-Marscille University, Aix-en-Provence, France
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Aim: estimate streamflow extremes everywhere on the hydrologic network
using continuous simulation
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Requirement: Simulate long time series of rainfall fields (hourly, 1km?)
GRAFFAS: Generation of Rainfall Fields From Areal Statistics
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[2] Simulation of the Gaussian process MAR(1)

Gi(x) = A.Gy_1(x) + Ei(x)

l

[3] Transformation to Rainfall (fields) R:(x)

[1] Simulation of Areal Statistics

0 if ®(Gy(z;)) < 1 — WAR,
IMF, WAR, & CV, Ry(zi) =

R (2, IMF;,CV;)  otherwise.

GRAFFAS
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[2] Simulation of the Gaussian process MAR(1)

Gi(x) = A.Gy_1(x) + Ei(x)

l

[3] Transformation to Rainfall (fields) R:(x)

[1] Simulation of Areal Statistics

0 if ®(Gy(z;)) < 1 — WAR,
IMF, WAR, & CV, Ry(zi) =

R (2, IMF;,CV;)  otherwise.

GRAFFAS

@ Approach introduced by Paschalis et al. (2013)
@ Extremal behavior & temporal structure are mostly handled in step [1]
@ Spatial structure is handled in steps [2]-[3]
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Step [2]: Simulation of a Gaussian Field over N pixels x:

Gt(x) = A.Gr_1(x) + E¢(x) with E;(x) ~ Ny(0, (1 — A%)Y)
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Step [2]: Simulation of a Gaussian Field over N pixels x:
Gt(x) = A.Gr_1(x) + E¢(x) with E;(x) ~ Ny(0, (1 — A%)Y)

Assumptions
O A diagonal == autocorrelation a; ; at each pixel but no advection

@ X specified using a covariance function depending on the inter-pixel
distance j;:
Yij=p(ry) =exp[— (F)] fori,j € {1,..,N}

© To allow for anisotropy:

o ot — _ cos Y sin
7'IJ_\/(X' X)) "TMT M(xi — x;) WIthM_(—bsini/) bcosw>
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Step [3]: From Gaussian Fields to Rainfall fields:

0 if &(G.(x:)) < 1— WAR,
Re(xi) = F_1(d>(Gt(x,-))—1+WARt

WAR: s Mt Ut) otherwise.
With:
Q@ F(.,p,0) the cdf of a LN (i, o)
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Step [3]: From Gaussian Fields to Rainfall fields:

Re(x) = 0 if P(G(x1)) <1— WAR;
t\Xi) = F_l(d)(Gt(X’%;é:rWARt,ut,at) otherwise.

With:
Q@ F(.,p,0) the cdf of a LN (i, o)

Introducing spatial heterogeneity:

@ Introduce heterogeneity in (i by using:
IMF ¢(x;) = kIMF x IMF,
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Step [3]: From Gaussian Fields to Rainfall fields:

Re(x) = 0 if P(G(x1)) <1— WAR;
t\Xi) = F_l(d)(Gt(X’%;é:rWARt,ut,at) otherwise.

With:
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IMF ¢(x;) = kIMF x IMF,

@ Currently, Pyet(x;) = Pr(Ri(x;) > 0) = WAR;
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Step [3]: From Gaussian Fields to Rainfall fields:

Re(x) = 0 if P(G(x1)) <1— WAR;
t\Xi) = F_l(d)(Gt(X’%;é:rWARt,ut,at) otherwise.

With:
Q@ F(.,p,0) the cdf of a LN (i, o)

Introducing spatial heterogeneity:

@ Introduce heterogeneity in (i by using:
IMF ¢(x;) = kIMF x IMF,

@ Currently, Pyet(x;) = Pr(Ri(x;) > 0) = WAR;
Modify as: Puet(xi) = B(WAR:, 1 — kKVAR 1+ KVAR)
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In summary...
Notation Description Step
{aiiti=1.n Auto-regression matrix A 2]
{\, b, ¢} Spatial covariance function 2]

{k"WARY,_; N Spatial heterogeneity for occurrence  [3]
{k!MFY,_1 v Spatial heterogeneity for intensity [3]
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In summary...
Notation Description Step
{aiiti=1.n Auto-regression matrix A 2]
{\, b9} Spatial covariance function 2]

{k"WARY,_; N Spatial heterogeneity for occurrence  [3]
{k!MFY,_1 v Spatial heterogeneity for intensity [3]

Given an observed dataset R:(x;) (N pixels x T time steps), yielding
observed time series IMF;, WAR; and CV4, estimation proceeds as follows:
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@ kMF estimated independently at each pixel (Log-Normal Ikh + tricks)

© A censored version of the Gaussian fields can then be computed —
censored likelihood approach of Vaittinada Ayar et al. 2020
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Data
COMEPHORE: 1h x 1km fields over continental France, 1997-present.
Merging of meteorological radar and rain gauge data (Tabary et al., 2012).
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https://iahs.info/uploads/dms/15900.047-255-260-351-73-IAHS_Tabary_et_a.pdf

Case Study

Estimation
Exemple of estimated parameters k,-’MF, k,-WAR and a; ;
Gardon area, fall season (SON)
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Estimation
Need to cluster events into "rainfall types”
Here season x 2-group clustering of (IMF;, WAR;, CV;)

Exemple for parameters k,-’MF:
1.25-
oo 1 HEIHHH
0.75-
Gap;eau Gardon Paris SaintLo Vivarais \IosgésSud
LowDJF === HighDJF LowMAM === HighMAM LowJJA HighJJA LowSON === HighSON
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Estimation
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Case Study

Example of simulated fields

2006-09-14:00h on Gardon
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Each boxplots represents spatial variability across
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Case Study

Model checking
More metrics...
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Case Study

Model checking
Error (in %) between observed and simulated 5-year return levels for
rainfall fields aggregated at various spatial scales

Q(T=5,D=1h) for Gapeau Q(T=5,D=24h) for Gapeau

50~ 50~

25-
‘{ Simulations
' Complete T 0

SR = i =
lli l E LE E-N:s::(:‘::“: Jli JJE lIE IE = P
SR

52 210 52 2
Size of sub-areas [km?] Size of sub-areas [km?]

SHARE meeting, 07/01/2026



Key findings
@ In many regions, the introduction of spatial heterogeneity is key to

reproduce the spatial variability of hydrologically relevant rainfall
metrics.

@ Spatial dependence is key to reproduce extremes of
spatially-aggregated quantities (important for hydrology).

© Overall, temporal persistence metrics are well reproduced
(autocorrelations, duration of wet/dry spells, etc.)

@ Overall, properties of temporally-aggregated rainfall are better
reproduced than those of hourly rainfall. This might be due to several
reasons (choice of distribution, missing advection, ...)
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Conclusion

To be explored in SHARE:
@ Introduce advection
@ Link with EGPD
@ Link with tri-variate generator of (IMF;, WAR;, CV})
© Develop validation metrics and strategy

© Use distributed hydrologic model to validate on river streamflow

SHARE meeting, 07/01/2026



SHARE meeting, 07/01/2026



60-

200

[mm]

100-

SHARE meetin

[mm]

=T

[mm]

!Pxor

Q(T=5.0=6h)

120-
s |5
0
Gapeau  Gartdon
Q(T=5.0=72h)
300-
200-
100~

Gapeau  Gardon

NoSpatialDep

I‘,‘ ;

Vosgessud

Vivarais VosgesSud



aaaaaaaaaaaaaa

SHARE meeting, 07/01/2026



Case Study

Spatial correlation plot for hourly precipitation

Gapeau Gardon Paris.
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