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Objective

Aim: estimate streamflow extremes everywhere on the hydrologic network
using continuous simulation
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Simulation

1 Approach introduced by Paschalis et al. (2013)

2 Extremal behavior & temporal structure are mostly handled in step [1]

3 Spatial structure is handled in steps [2]-[3]
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Simulation

Step [2]: Simulation of a Gaussian Field over N pixels x:

Gt(x) = A.Gt−1(x) + Et(x) with Et(x) ∼ NN(0, (1− A2)Σ)

Assumptions

1 A diagonal =⇒ autocorrelation ai ,i at each pixel but no advection

2 Σ specified using a covariance function depending on the inter-pixel
distance τij :
Σij = ρ(τij) = exp

[
−

( τij
λ

)]
for i , j ∈ {1, ..,N}

3 To allow for anisotropy:

τij =
√
(xi − xj)TMTM(xi − xj) with M =

(
cosψ sinψ

−b sinψ b cosψ

)
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Simulation

Step [3]: From Gaussian Fields to Rainfall fields:

Rt(xi ) =

{
0 if Φ(Gt(xi )) < 1−WARt

F−1
(Φ(Gt(xi ))−1+WARt

WARt
, µt , σt

)
otherwise.

With:

1 F (., µ, σ) the cdf of a LN (µ, σ)

2 σt =
√
log(1 + CVt

2); µt = log(IMFt/WARt)− 0.5.σ2t

Introducing spatial heterogeneity:

1 Introduce heterogeneity in µt by using:
ÎMF t(xi ) = k IMF

i × IMFt
2 Currently, Pwet(xi ) = Pr(Rt(xi ) > 0) = WARt

Modify as: Pwet(xi ) = B(WARt , 1− kWAR
i , 1 + kWAR

i )
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Simulation
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Estimation

In summary...

Notation Description Step

{ai ,i}i=1..N Auto-regression matrix A [2]
{λ, b, ψ} Spatial covariance function [2]

{kWAR
i }i=1..N Spatial heterogeneity for occurrence [3]

{k IMF
i }i=1..N Spatial heterogeneity for intensity [3]

Given an observed dataset Rt(xi ) (N pixels × T time steps), yielding
observed time series IMFt , WARt and CVt , estimation proceeds as follows:

1 kWAR
i estimated independently at each pixel (Bernoulli likelihood)

2 k IMF
i estimated independently at each pixel (Log-Normal lkh + tricks)

3 A censored version of the Gaussian fields can then be computed =⇒
censored likelihood approach of Vaittinada Ayar et al. 2020

4 ai ,i estimated independently at each pixel
5 {λ, b, ψ} estimated from all pixels
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Case Study

Data
COMEPHORE: 1h × 1km fields over continental France, 1997-present.
Merging of meteorological radar and rain gauge data (Tabary et al., 2012).
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https://www.data.gouv.fr/datasets/reanalyses-comephore
https://iahs.info/uploads/dms/15900.047-255-260-351-73-IAHS_Tabary_et_a.pdf


Case Study

Estimation
Exemple of estimated parameters k IMF

i , kWAR
i and ai ,i

Gardon area, fall season (SON)
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Case Study

Estimation
Need to cluster events into ”rainfall types”
Here season × 2-group clustering of (IMFt ,WARt ,CVt)

Exemple for parameters k IMF
i :
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Case Study

Estimation
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Case Study

Example of simulated fields
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Case Study

Model checking
Occurrence and Extreme metrics for the six domains
Each boxplots represents spatial variability across N pixels
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Case Study

Model checking
More metrics...
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Case Study

Model checking
Error (in %) between observed and simulated 5-year return levels for
rainfall fields aggregated at various spatial scales
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Case Study

Key findings

1 In many regions, the introduction of spatial heterogeneity is key to
reproduce the spatial variability of hydrologically relevant rainfall
metrics.

2 Spatial dependence is key to reproduce extremes of
spatially-aggregated quantities (important for hydrology).

3 Overall, temporal persistence metrics are well reproduced
(autocorrelations, duration of wet/dry spells, etc.)

4 Overall, properties of temporally-aggregated rainfall are better
reproduced than those of hourly rainfall. This might be due to several
reasons (choice of distribution, missing advection, ...)
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Conclusion

To be explored in SHARE:

1 Introduce advection

2 Link with EGPD

3 Link with tri-variate generator of (IMFt ,WARt ,CVt)

4 Develop validation metrics and strategy

5 Use distributed hydrologic model to validate on river streamflow
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The End
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WAR in ]0,1] WAR in ]0,0.5] Complete Homogeneous NoSpatialDep Obs

Spatial correlation plot for hourly precipitation
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