

MULTIVARIATE MODELING OF LOW, MODERATE, AND LARGE POSITIVE VALUES WITHOUT THRESHOLD SELECTION STEPS

Carlo Gaetan

Università Ca' Foscari di Venezia, Italy

gaetan@unive.it

SHARE kick-off meeting (Brest, France)

7 January 2026

BASED ON

Cornell University

arXiv > stat > arXiv:2510.02152

Statistics > Methodology

[Submitted on 2 Oct 2025]

Multivariate distributional modeling of low, moderate, and large intensities without threshold selection steps

Carlo Gaetan, Philippe Naveau

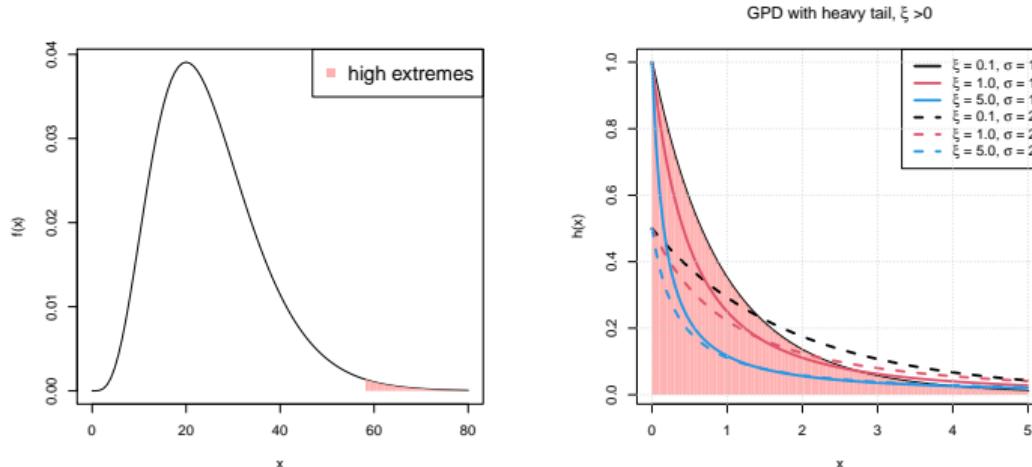
Warm up

GENERALIZED PARETO DISTRIBUTION (GPD)

The distribution of X , when X exceeds a high threshold u , can be approximated by a GPD

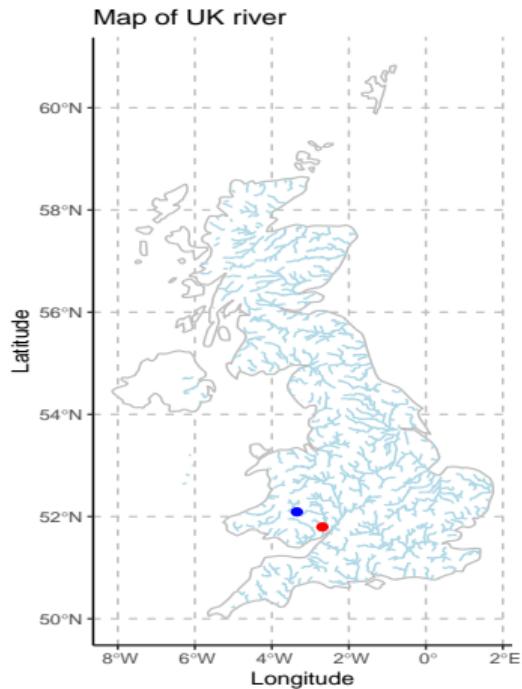
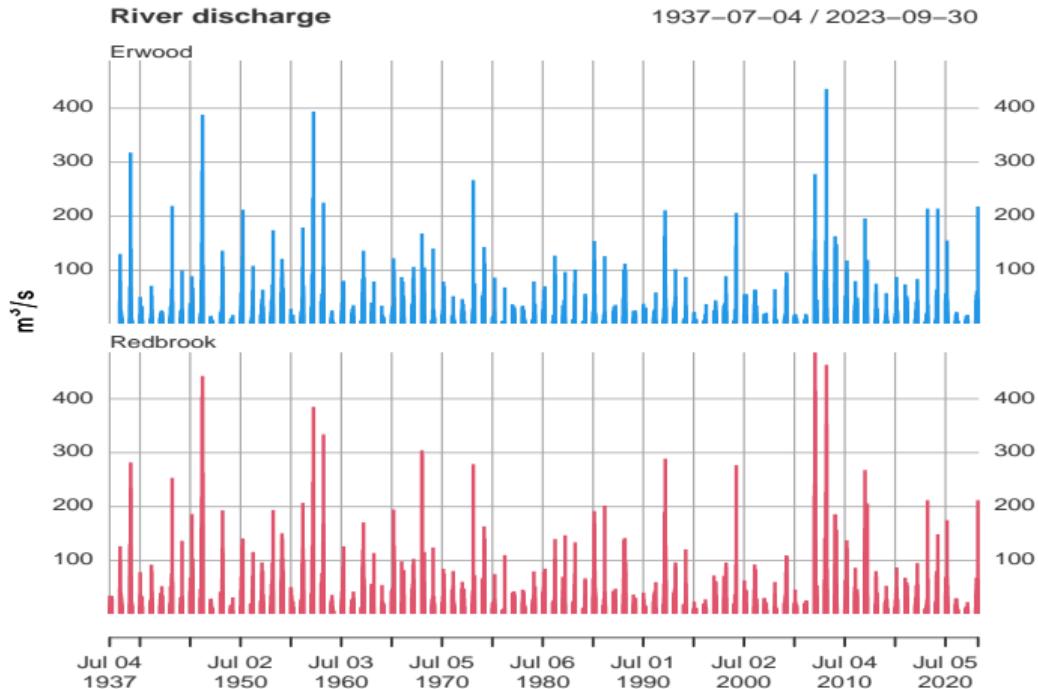
$$H_\xi((x - u)/\sigma) = \begin{cases} 1 - (1 + \xi(x - u)/\sigma)_+^{-1/\xi} & \text{for } \xi \neq 0 \\ 1 - \exp(-(x - u)/\sigma) & \text{for } \xi = 0 \end{cases}$$

ξ shape parameter, $\sigma > 0$ scale parameter and $a_+ = \max(a, 0)$.

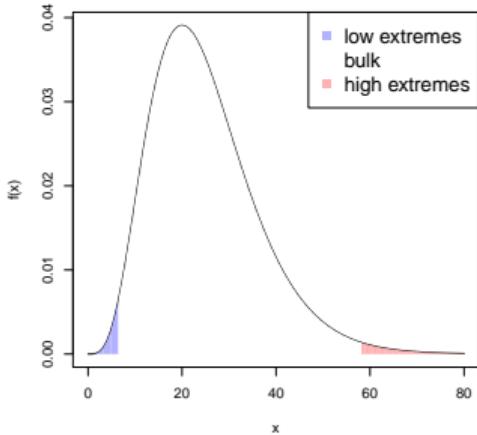


Example

EXAMPLE: WEEKLY MAXIMUM SUMMER RIVER DISCHARGES OF WYE RIVER

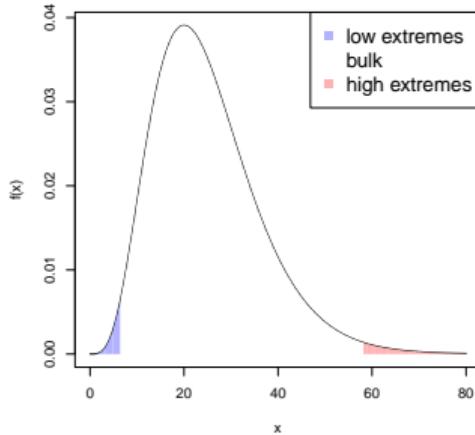


RIVER DISCHARGES



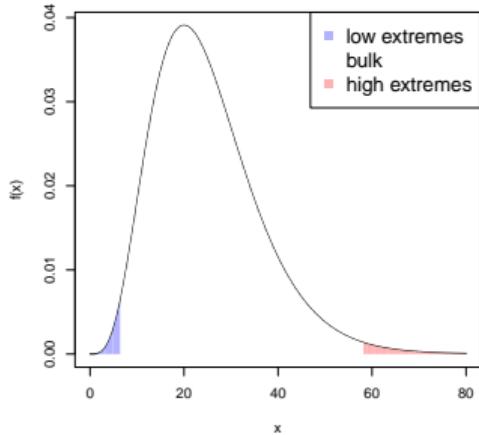
- ▶ **Flood risk managers** often focus on the analysis of high river flows
- ▶ **Farmers** may be interested in periods of low river runoffs to prevent food production shortages
- ▶ **Energy producers** in charge of electrical dams can be concerned by the full range of the variable of interest

RIVER DISCHARGES



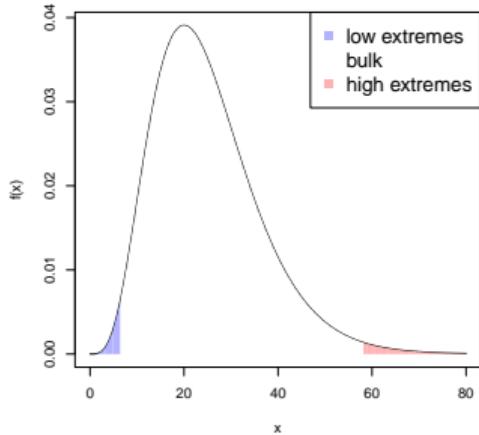
- ▶ **Flood risk managers** often focus on the analysis of high river flows
- ▶ **Farmers** may be interested in periods of low river runoffs to prevent food production shortages
- ▶ **Energy producers** in charge of electrical dams can be concerned by the full range of the variable of interest

RIVER DISCHARGES



- ▶ **Flood risk managers** often focus on the analysis of high river flows
- ▶ **Farmers** may be interested in periods of low river runoffs to prevent food production shortages
- ▶ **Energy producers** in charge of electrical dams can be concerned by the full range of the variable of interest

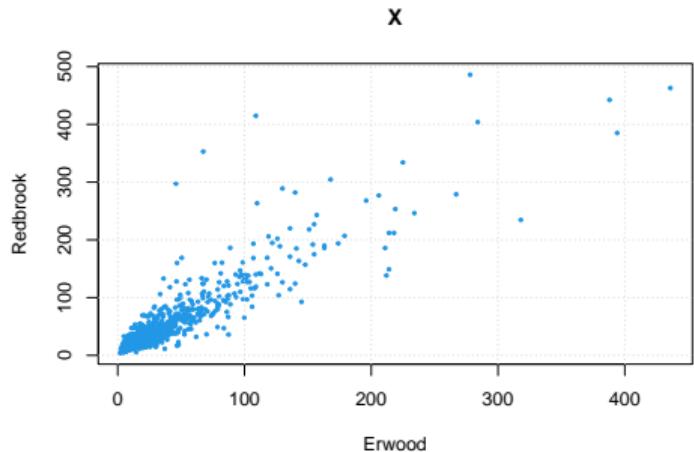
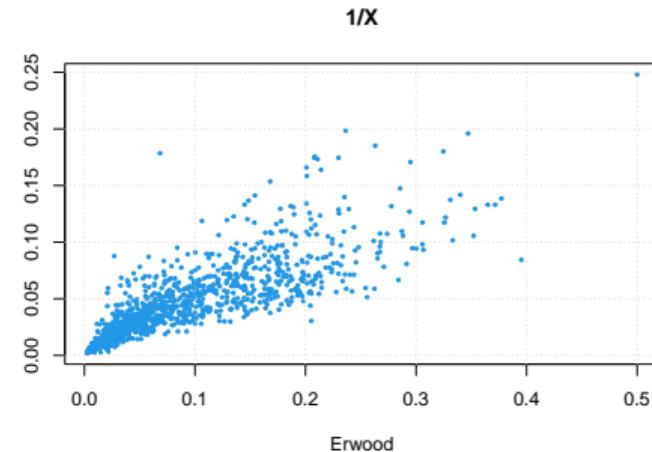
RIVER DISCHARGES



- ▶ **Flood risk managers** often focus on the analysis of high river flows
- ▶ **Farmers** may be interested in periods of low river runoffs to prevent food production shortages
- ▶ **Energy producers** in charge of electrical dams can be concerned by the full range of the variable of interest

RIVER DISCHARGES: DEPENDENCE

Sites along the same river basin as nearby measurements can be strongly dependent



What is an Extended Generalized Pareto Distribution ?

Water Resources Research

Research Article | Free Access

Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection

Philippe Naveau , Raphael Huser, Pierre Ribereau, Alexis Hannart

First published: 04 March 2016 | <https://doi.org/10.1002/2015WR018552> | Citations: 110

Volume 52, Issue 4

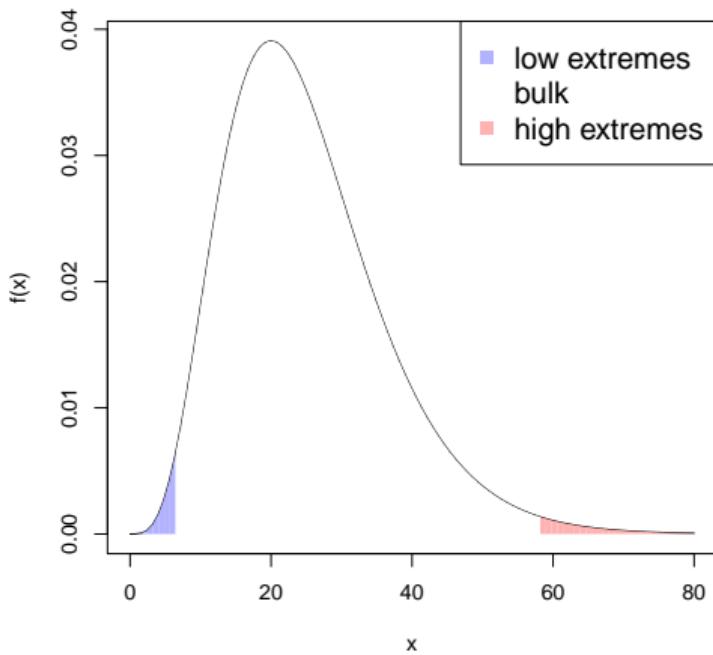
April 2016

Pages 2753-2769

Figures References Related Information

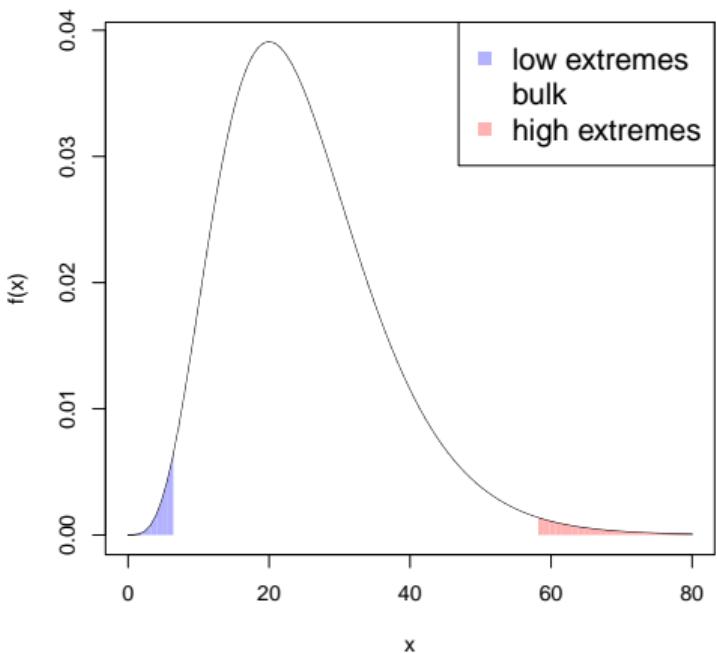
➊ Distribution for positive data !

TWO STRATEGIES TO MODEL JOINTLY EXTREMES AND BULK

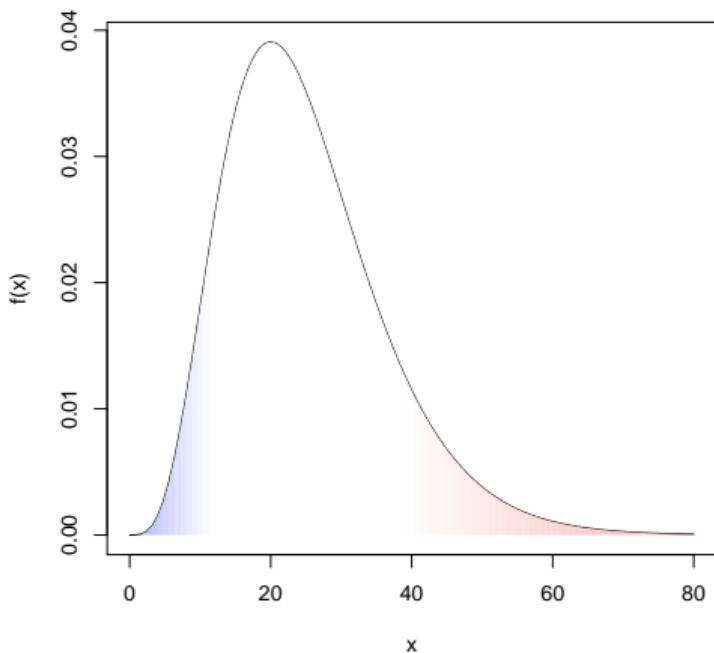


Classical approach

TWO STRATEGIES TO MODEL JOINTLY EXTREMES AND BULK



Classical approach



EGPD approach

THE THREE INGREDIENTS FOR A EGPD

High extremes

ξ , the GPD parameter of X

THE THREE INGREDIENTS FOR A EGPD

Low extremes

$1/\kappa$ the GPD parameter of $1/X$

High extremes

ξ , the GPD parameter of X

THE THREE INGREDIENTS FOR A EGPD

Low extremes

$1/\kappa$ the GPD parameter of $1/X$

Bulk

$B(u)$ a CDF on $[0, 1]$ with a pdf $b(u)$

High extremes

ξ , the GPD parameter of X

THE THREE INGREDIENTS FOR A EGPD

Low extremes

$1/\kappa$ the GPD parameter of $1/X$

Bulk

$B(u)$ a CDF on $[0, 1]$ with a pdf $b(u)$

High extremes

ξ the GPD parameter of X

$$\Pr(X \leq x) = B(H_\xi(x)^\kappa)$$

where the pdf $b(u)$ is such that

$$0 < b(0) < \infty \quad \text{and} \quad 0 < b(1) < \infty$$

THE THREE INGREDIENTS FOR A EGPD

Low extremes

$1/\kappa$ the GPD parameter of $1/X$

Bulk

$B(u)$ a CDF on $[0, 1]$ with a pdf $b(u)$

High extremes

ξ the GPD parameter of X

$$\Pr(X \leq x) = B(H_\xi(x)^\kappa)$$

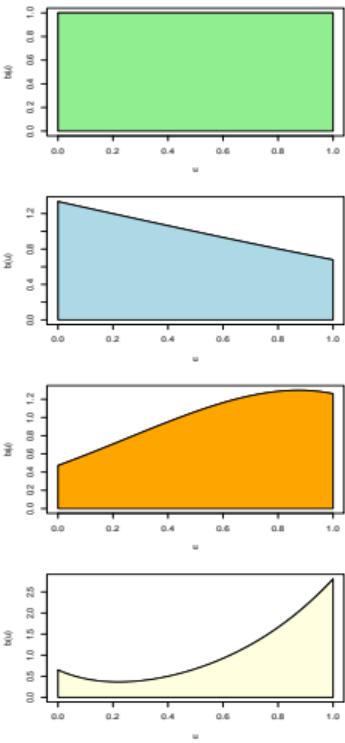
where the pdf $b(u)$ is such that

$$0 < b(0) < \infty \quad \text{and} \quad 0 < b(1) < \infty$$

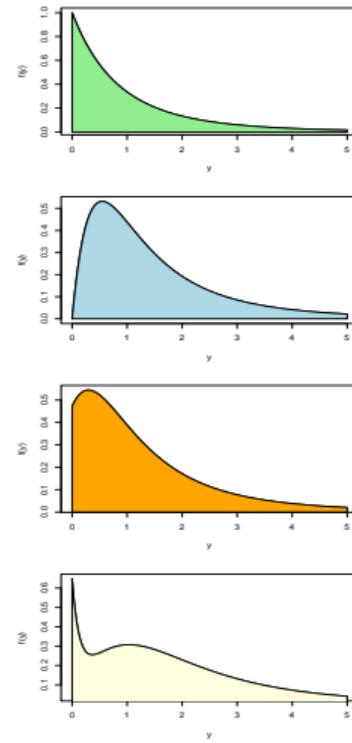
- ▶ Scale parameter σ is absorbed in $B(u)$

EGPD EXAMPLES

$b(u)$



EGPD density



TAKE HOME MESSAGE

- ▶ $X \sim \text{EGPD}(\kappa, \xi, B)$
- ▶ $1/X \sim \text{EGPD}(1/\xi, 1/\kappa, \tilde{B})$
- ▶ $B(\cdot) \rightarrow \tilde{B}(\cdot)$

The inverse $1/X$ of a EGPD r.v. is still an EGPD

LEMMA

If

$$X \sim EGPD(\kappa, \xi, B), \quad \Leftrightarrow \quad \Pr(X \leq x) = B(H_\xi(x)^\kappa)$$

then

$$1/X \sim EGPD(1/\xi, 1/\kappa, \tilde{B}), \quad \Leftrightarrow \quad \Pr(1/X \leq \tilde{x}) = \tilde{B}(H_{1/\kappa}(\tilde{x})^{1/\xi})$$

with

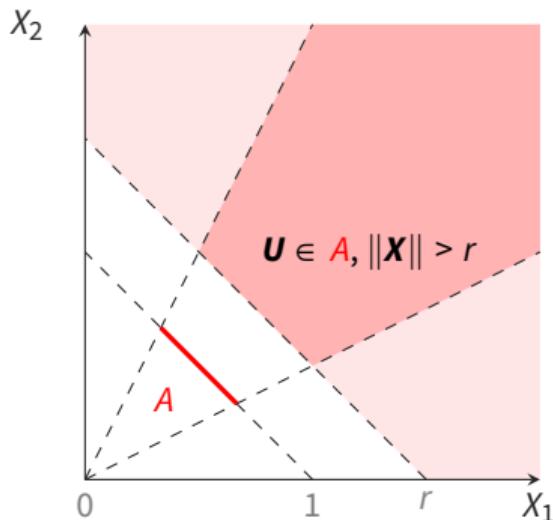
$$\tilde{b}(0) = \kappa \xi^{1/\xi} b(1) \quad \text{and} \quad \tilde{b}(1) = \xi b(0)$$

A multivariate EGPD

POLAR EXTREMES COORDINATES OF $\mathbf{X} = (X_1, X_2)$

$$\mathbf{X} = \|\mathbf{X}\| \times \mathbf{U}$$

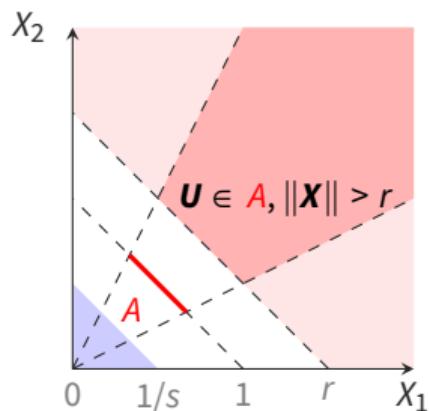
pseudo-radius $\|\mathbf{X}\| = X_1 + X_2$ and pseudo-angle $\mathbf{U} = (X_1/\|\mathbf{X}\|, X_2/\|\mathbf{X}\|)$



$$\mathbf{X} = \|\mathbf{X}\| \times \mathbf{U}$$

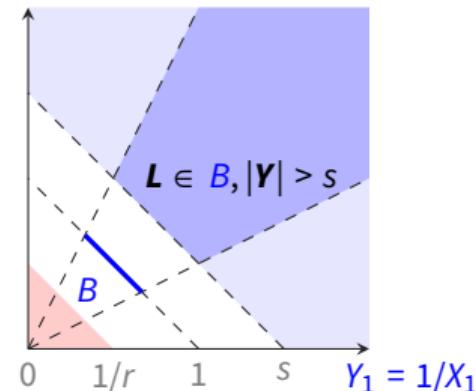
$$\mathbf{Y} = |\mathbf{Y}| \times \mathbf{L}$$

Upper extreme's representation



Lower extreme's representation

$$Y_2 = 1/X_2$$



Radius $\|\mathbf{X}\| = X_1 + X_2$ and $\mathbf{U} = \frac{\mathbf{X}}{\|\mathbf{X}\|}$

$|\mathbf{Y}| = \frac{1}{\|\mathbf{1}/\mathbf{Y}\|}$ and $\mathbf{L} = \frac{\mathbf{Y}}{|\mathbf{Y}|}$

TAKE HOME MESSAGE

- ▶ $\mathbf{X} = (X_1, \dots, X_d)$ with $X_i \sim \text{EGPD}(\kappa, \xi, B)$ for all $i = 1, \dots, d$.
- ▶ Distribution of $\|\mathbf{X}\| = X_1 + \dots + X_d$

The sum of dependent EGPDs is still an EGPD

- ▶ The upper tail parameter, ξ , remains unchanged from marginal behaviors to $\|\mathbf{X}\|$, while the lower tail behavior can be have a changing κ .
- ▶ $B(\cdot) \rightarrow B_d(\cdot)$

PROPOSITION: DISTRIBUTION OF $\|\mathbf{X}\| = X_1 + \dots + X_d$

Let be $\mathbf{X} = (X_1, \dots, X_d)$ with $X_i \sim \text{EGPD}(\kappa, \xi, B)$ for all $i = 1, \dots, d$.

If there exist three positive and finite constants, a, c_- and c_+ such that

$$\lim_{x \rightarrow \infty} \frac{\Pr(\|\mathbf{X}\| > x)}{\Pr(X_i > x)} = c_+ \quad (1)$$

and

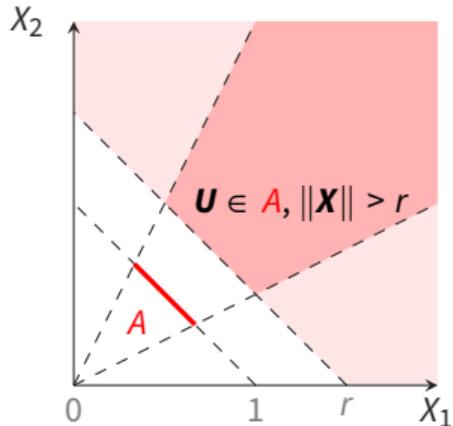
$$\lim_{x \rightarrow 0^+} \frac{\Pr(\|\mathbf{X}\| \leq x)}{[\Pr(X_i \leq x)]^a} = c_-, \quad (2)$$

then there exists a CDF B_d such that $\|\mathbf{X}\| \sim \text{EGPD}(a\kappa, \xi, B_d)$ with

$$b_d(0) = c_- b(0)^a \text{ and } b_d(1) = c_+ b(1)/a.$$

- ▶ Moreover $|\mathbf{Y}| = 1/\|\mathbf{X}\|$ is also $\text{EGPD}(1/\xi, 1/(a\kappa), \tilde{B}_d)$

MULTIVARIATE REGULAR VARIATION DISTRIBUTION



$$\mathbf{X} = \|\mathbf{X}\| \times \mathbf{u}$$

- ▶ $\|\mathbf{X}\|$ independent of \mathbf{u} when $\|\mathbf{X}\|$ gets large
- ▶ $\Pr(\mathbf{u} \in A \mid \|\mathbf{X}\| > r)$ has a non-degenerate limit as $r \rightarrow \infty$, i.e.

$$\lim_{r \rightarrow \infty} \Pr(\mathbf{u} \in A \mid \|\mathbf{X}\| > r) = \Pr(\mathbf{u} \in A)$$

The main differences with classical EVT modelling are that

1. Our interest is not only on the upper extremal behaviour of \mathbf{X} , but also its lower extremal behaviour
2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of $\|\mathbf{X}\|$
3. In contrast to classical regular variation principles, the radial component **is not necessarily assumed independent** of the angular component
4. In particular, the degree of dependence will change according to the value $\|\mathbf{X}\|$

The main differences with classical EVT modelling are that

1. Our interest is not only on the upper extremal behaviour of \mathbf{X} , but also its lower extremal behaviour
2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of $\|\mathbf{X}\|$
3. In contrast to classical regular variation principles, the radial component **is not necessarily assumed independent** of the angular component
4. In particular, the degree of dependence will change according to the value $\|\mathbf{X}\|$

The main differences with classical EVT modelling are that

1. Our interest is not only on the upper extremal behaviour of \mathbf{X} , but also its lower extremal behaviour
2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of $\|\mathbf{X}\|$
3. In contrast to classical regular variation principles, the radial component **is not necessarily assumed independent** of the angular component
4. In particular, the degree of dependence will change according to the value $\|\mathbf{X}\|$

The main differences with classical EVT modelling are that

1. Our interest is not only on the upper extremal behaviour of \mathbf{X} , but also its lower extremal behaviour
2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of $\|\mathbf{X}\|$
3. In contrast to classical regular variation principles, the radial component **is not necessarily assumed independent** of the angular component
4. In particular, the degree of dependence will change according to the value $\|\mathbf{X}\|$

The main differences with classical EVT modelling are that

1. Our interest is not only on the upper extremal behaviour of \mathbf{X} , but also its lower extremal behaviour
2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of $\|\mathbf{X}\|$
3. In contrast to classical regular variation principles, the radial component **is not necessarily assumed independent** of the angular component
4. In particular, the degree of dependence will change according to the value $\|\mathbf{X}\|$

BIVARIATE EGPD $\mathbf{X} = (X_1, X_2)$, WITH FOUR INGREDIENTS

$$X_1 = \|\mathbf{X}\| U_1 \quad \text{and} \quad X_2 = \|\mathbf{X}\| U_2 = \|\mathbf{X}\|(1 - U_1)$$

$$\|\mathbf{X}\| \sim EGPD(\kappa, \xi, B_d)$$

Low extremes

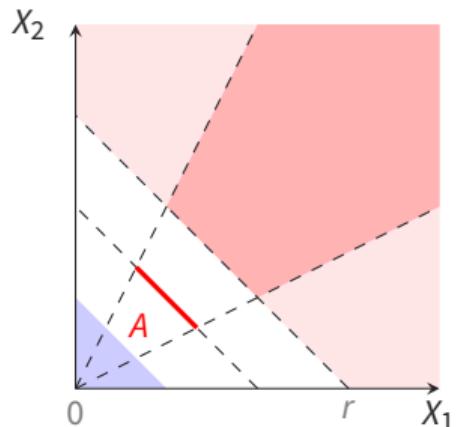
κ_d the GPD parameter of $1/\|\mathbf{X}\|$

Bulk

B_d a CDF function on $[0, 1]$ (with
PDF b_d)

High extremes

ξ the GPD parameter of $\|\mathbf{X}\|$



$$\mathbf{U} = \mathbf{X}/\|\mathbf{X}\|$$

Bivariate conditional model

$$\left[\log \left(\frac{U_1}{1 - U_1} \right) \middle| \|\mathbf{X}\| = r \right] \stackrel{d}{=} \delta(r) Z$$

with Z standardized Gaussian $\perp \|\mathbf{X}\|$

Bivariate conditional model

$$\left[\log \left(\frac{U_1}{1 - U_1} \right) \middle| \|\mathbf{X}\| = r \right] \stackrel{d}{=} \delta(r)Z$$

with Z standardized Gaussian $\perp \|\mathbf{X}\|$

- ▶ If $\delta(r)$ remains constant for large values of r , then we are in the multivariate regular variation framework
- ▶ We can specify other conditional distribution

$$U_1 | \|\mathbf{X}\| = r \sim f(\cdot; \delta(r))$$

under the constraint $\mathbb{E} (U_1 | \|\mathbf{X}\| = r) = 1/2$

- ▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!

Bivariate conditional model

$$\left[\log \left(\frac{U_1}{1 - U_1} \right) \middle| \|\mathbf{X}\| = r \right] \stackrel{d}{=} \delta(r)Z$$

with Z standardized Gaussian $\perp \|\mathbf{X}\|$

- ▶ If $\delta(r)$ remains constant for large values of r , then we are in the multivariate regular variation framework
- ▶ We can specify other conditional distribution

$$U_1 | \|\mathbf{X}\| = r \sim f(\cdot; \delta(r))$$

under the constraint $\mathbb{E}(U_1 | \|\mathbf{X}\| = r) = 1/2$

- ▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!

Bivariate conditional model

$$\left[\log \left(\frac{U_1}{1 - U_1} \right) \middle| \|\mathbf{X}\| = r \right] \stackrel{d}{=} \delta(r)Z$$

with Z standardized Gaussian $\perp \|\mathbf{X}\|$

- ▶ If $\delta(r)$ remains constant for large values of r , then we are in the multivariate regular variation framework
- ▶ We can specify other conditional distribution

$$U_1 | \|\mathbf{X}\| = r \sim f(\cdot; \delta(r))$$

under the constraint $\mathbb{E}(U_1 | \|\mathbf{X}\| = r) = 1/2$

- ▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!

Bivariate conditional model

$$\left[\log \left(\frac{U_1}{1 - U_1} \right) \middle| \|\mathbf{X}\| = r \right] \stackrel{d}{=} \delta(r)Z$$

with Z standardized Gaussian $\perp \|\mathbf{X}\|$

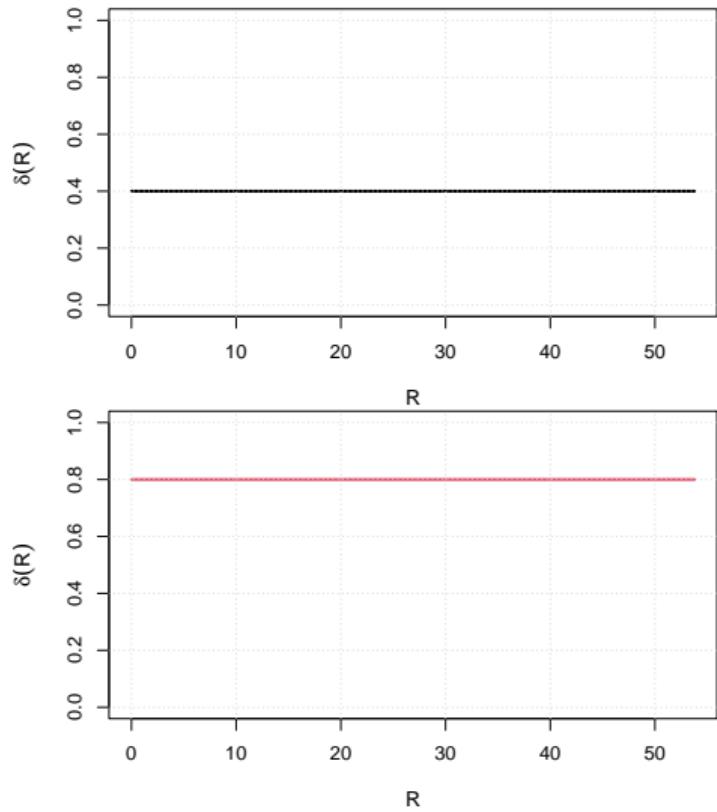
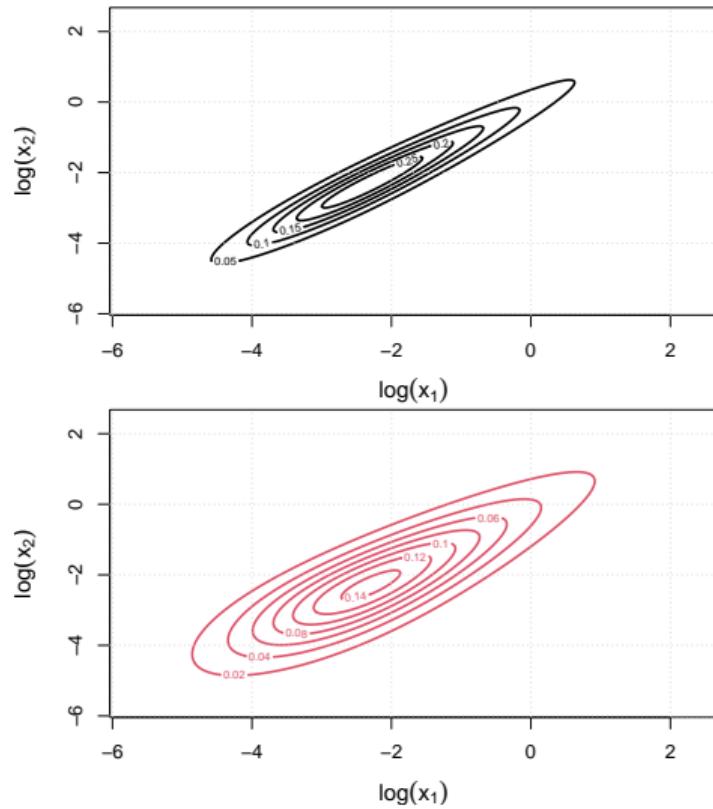
- ▶ If $\delta(r)$ remains constant for large values of r , then we are in the multivariate regular variation framework
- ▶ We can specify other conditional distribution

$$U_1 | \|\mathbf{X}\| = r \sim f(\cdot; \delta(r))$$

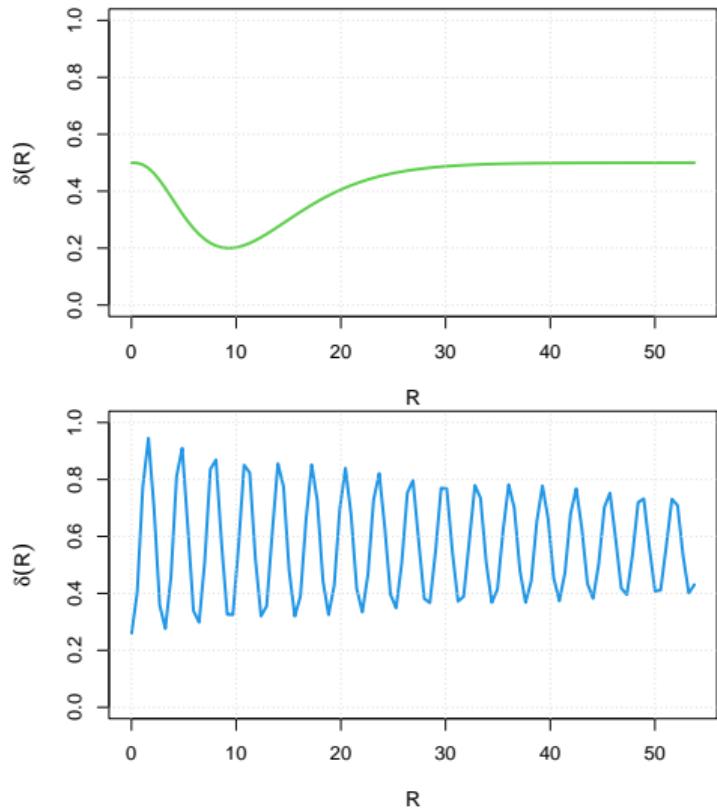
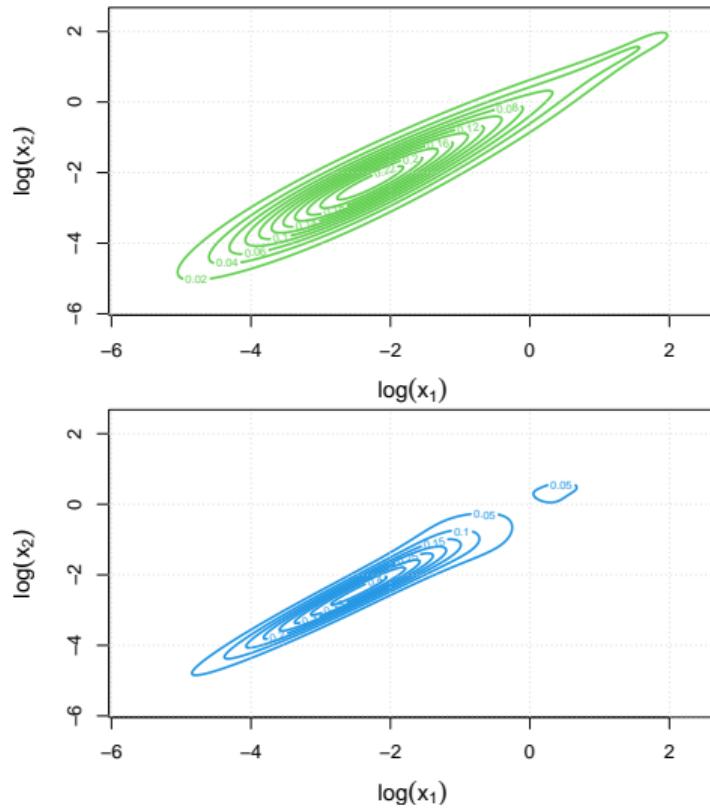
under the constraint $\mathbb{E}(U_1 | \|\mathbf{X}\| = r) = 1/2$

- ▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!

FLEXIBILITY (I)



FLEXIBILITY (II)



Does this work in practice?

ESTIMATION IN TWO STEPS: FIRST STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $r_i = x_{i,1} + x_{i,2}$

1. Maximize the EGPD log-likelihood

$$l_R(\kappa, \xi) = \sum_{i=1}^n \left\{ \log \kappa + (\kappa - 1) \log H_\xi(r_i) + \log h_\xi(r_i) + \log \hat{b}(H_\xi(r_i)^\kappa) \right\}.$$

► Density $b(u)$ is approximated with **Bernstein polynomials**

$$\hat{b}(u) = m \sum_{k=1}^m \omega_{k,m} \beta_{k,m-k+1}(u)$$

with $\beta_{i,j}(u) = \binom{j}{i} u^i (1-u)^{j-i}$ and $\omega_{k,m} = \mathbb{B}_n(k/m) - \mathbb{B}_n((k-1)/m)$ [\mathbb{B}_n ECDF of $b_i = H_\xi(\|\mathbf{x}_i\|)^\kappa$]

► **Ad-hoc R program but simple to write!**

```
evd::dgpd(x = x, loc = 0, scale = 1, shape = xi)
evd::pgpd(x = x, loc = 0, scale = 1, shape = xi)
ecdf(b)
dbeta(u, shape1 = i, shape2 = j-i+1)
```

ESTIMATION IN TWO STEPS: FIRST STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $r_i = x_{i,1} + x_{i,2}$

1. Maximize the EGPD log-likelihood

$$l_R(\kappa, \xi) = \sum_{i=1}^n \left\{ \log \kappa + (\kappa - 1) \log H_\xi(r_i) + \log h_\xi(r_i) + \log \hat{b}(H_\xi(r_i)^\kappa) \right\}.$$

- Density $b(u)$ is approximated with **Bernstein polynomials**

$$\hat{b}(u) = m \sum_{k=1}^m \omega_{k,m} \beta_{k,m-k+1}(u)$$

with $\beta_{i,j}(u) = \binom{j}{i} u^i (1-u)^{j-i}$ and $\omega_{k,m} = \mathbb{B}_n(k/m) - \mathbb{B}_n((k-1)/m)$ [\mathbb{B}_n ECDF of $b_i = H_\xi(\|\mathbf{x}_i\|)^\kappa$]

- **Ad-hoc R program but simple to write!**

```
evd::dgpd(x = x, loc = 0, scale = 1, shape = xi)
evd::pgpd(x = x, loc = 0, scale = 1, shape = xi)
ecdf(b)
dbeta(u, shape1 = i, shape2 = j-i+1)
```

ESTIMATION IN TWO STEPS: FIRST STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $r_i = x_{i,1} + x_{i,2}$

1. Maximize the EGPD log-likelihood

$$l_R(\kappa, \xi) = \sum_{i=1}^n \left\{ \log \kappa + (\kappa - 1) \log H_\xi(r_i) + \log h_\xi(r_i) + \log \hat{b}(H_\xi(r_i)^\kappa) \right\}.$$

- Density $b(u)$ is approximated with **Bernstein polynomials**

$$\hat{b}(u) = m \sum_{k=1}^m \omega_{k,m} \beta_{k,m-k+1}(u)$$

with $\beta_{i,j}(u) = \binom{j}{i} u^i (1-u)^{j-i}$ and $\omega_{k,m} = \mathbb{B}_n(k/m) - \mathbb{B}_n((k-1)/m)$ [\mathbb{B}_n ECDF of $b_i = H_\xi(\|\mathbf{x}_i\|)^\kappa$]

- Ad-hoc R program but simple to write!

```
evd::dgpd(x = x, loc = 0, scale = 1, shape = xi)
evd::pgpd(x = x, loc = 0, scale = 1, shape = xi)
ecdf(b)
dbeta(u, shape1 = i, shape2 = j-i+1)
```

ESTIMATION IN TWO STEPS: FIRST STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $r_i = x_{i,1} + x_{i,2}$

1. Maximize the EGPD log-likelihood

$$l_R(\kappa, \xi) = \sum_{i=1}^n \left\{ \log \kappa + (\kappa - 1) \log H_\xi(r_i) + \log h_\xi(r_i) + \log \hat{b}(H_\xi(r_i)^\kappa) \right\}.$$

- Density $b(u)$ is approximated with **Bernstein polynomials**

$$\hat{b}(u) = m \sum_{k=1}^m \omega_{k,m} \beta_{k,m-k+1}(u)$$

with $\beta_{i,j}(u) = \binom{j}{i} u^i (1-u)^{j-i}$ and $\omega_{k,m} = \mathbb{B}_n(k/m) - \mathbb{B}_n((k-1)/m)$ [\mathbb{B}_n ECDF of $b_i = H_\xi(\|\mathbf{x}_i\|)^\kappa$]

- **Ad-hoc R program but simple to write!**

```
evd::dgpd(x = x, loc = 0, scale = 1, shape = xi)
evd::pgpd(x = x, loc = 0, scale = 1, shape = xi)
ecdf(b)
dbeta(u, shape1 = i, shape2 = j-i+1)
```

ESTIMATION IN TWO STEPS: SECOND STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $v_i = \log(x_{i,1}) - \log(x_{i,2})$

2. Maximize the penalized Gaussian log-likelihood

$$PL_V(\boldsymbol{\gamma}) = - \sum_{i=1}^n \left\{ \log(\delta(r_i)) + 0.5 \left(\frac{v_i}{\delta(r_i)} \right)^2 \right\} + \lambda \boldsymbol{\gamma}^\top \mathbf{P} \boldsymbol{\gamma}.$$

* Linear combination of K basis functions $S_j(r)$ (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^K \gamma_j S_j(r), \quad \boldsymbol{\gamma} = (\gamma_0, \dots, \gamma_K)^\top$$

* $\lambda > 0$ smoothing parameter and \mathbf{P} is a positive semi-definite matrix

* **R code**

```
mgcv:::gam(list(v~1,~s(r),method = "REML",family=gaulss()))
```

ESTIMATION IN TWO STEPS: SECOND STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $v_i = \log(x_{i,1}) - \log(x_{i,2})$

2. Maximize the penalized Gaussian log-likelihood

$$PL_V(\boldsymbol{\gamma}) = - \sum_{i=1}^n \left\{ \log(\delta(r_i)) + 0.5 \left(\frac{v_i}{\delta(r_i)} \right)^2 \right\} + \lambda \boldsymbol{\gamma}^\top \mathbf{P} \boldsymbol{\gamma}.$$

* Linear combination of K basis functions $S_j(r)$ (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^K \gamma_j S_j(r), \quad \boldsymbol{\gamma} = (\gamma_0, \dots, \gamma_K)^\top$$

* $\lambda > 0$ smoothing parameter and \mathbf{P} is a positive semi-definite matrix

* **R code**

```
mgcv:::gam(list(v~1,~s(r),method = "REML",family=gaulss()))
```

ESTIMATION IN TWO STEPS: SECOND STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $v_i = \log(x_{i,1}) - \log(x_{i,2})$

2. Maximize the penalized Gaussian log-likelihood

$$PL_V(\boldsymbol{\gamma}) = - \sum_{i=1}^n \left\{ \log(\delta(r_i)) + 0.5 \left(\frac{v_i}{\delta(r_i)} \right)^2 \right\} + \lambda \boldsymbol{\gamma}^\top \mathbf{P} \boldsymbol{\gamma}.$$

* Linear combination of K basis functions $S_j(r)$ (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^K \gamma_j S_j(r), \quad \boldsymbol{\gamma} = (\gamma_0, \dots, \gamma_K)^\top$$

* $\lambda > 0$ smoothing parameter and \mathbf{P} is a positive semi-definite matrix

* **R code**

```
mgcv:::gam(list(v~1,~s(r),method = "REML",family=gaulss()))
```

ESTIMATION IN TWO STEPS: SECOND STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $v_i = \log(x_{i,1}) - \log(x_{i,2})$

2. Maximize the penalized Gaussian log-likelihood

$$PL_V(\boldsymbol{\gamma}) = - \sum_{i=1}^n \left\{ \log(\delta(r_i)) + 0.5 \left(\frac{v_i}{\delta(r_i)} \right)^2 \right\} + \lambda \boldsymbol{\gamma}^\top \mathbf{P} \boldsymbol{\gamma}.$$

* Linear combination of K basis functions $S_j(r)$ (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^K \gamma_j S_j(r), \quad \boldsymbol{\gamma} = (\gamma_0, \dots, \gamma_K)^\top$$

* $\lambda > 0$ smoothing parameter and \mathbf{P} is a positive semi-definite matrix

* R code

```
mgcv:::gam(list(v~1,~s(r),method = "REML",family=gaulss()))
```

ESTIMATION IN TWO STEPS: SECOND STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $v_i = \log(x_{i,1}) - \log(x_{i,2})$

2. Maximize the penalized Gaussian log-likelihood

$$PL_V(\boldsymbol{\gamma}) = - \sum_{i=1}^n \left\{ \log(\delta(r_i)) + 0.5 \left(\frac{v_i}{\delta(r_i)} \right)^2 \right\} + \lambda \boldsymbol{\gamma}^\top \mathbf{P} \boldsymbol{\gamma}.$$

* Linear combination of K basis functions $S_j(r)$ (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^K \gamma_j S_j(r), \quad \boldsymbol{\gamma} = (\gamma_0, \dots, \gamma_K)^\top$$

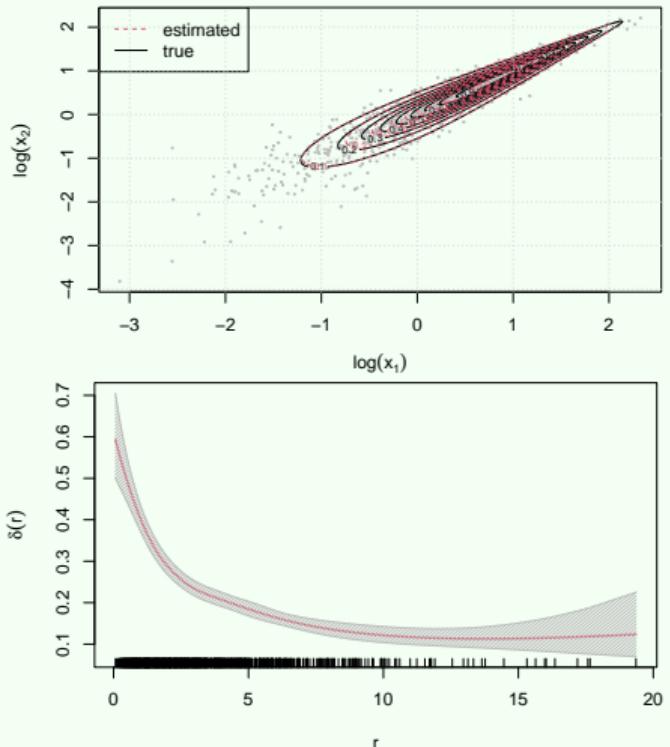
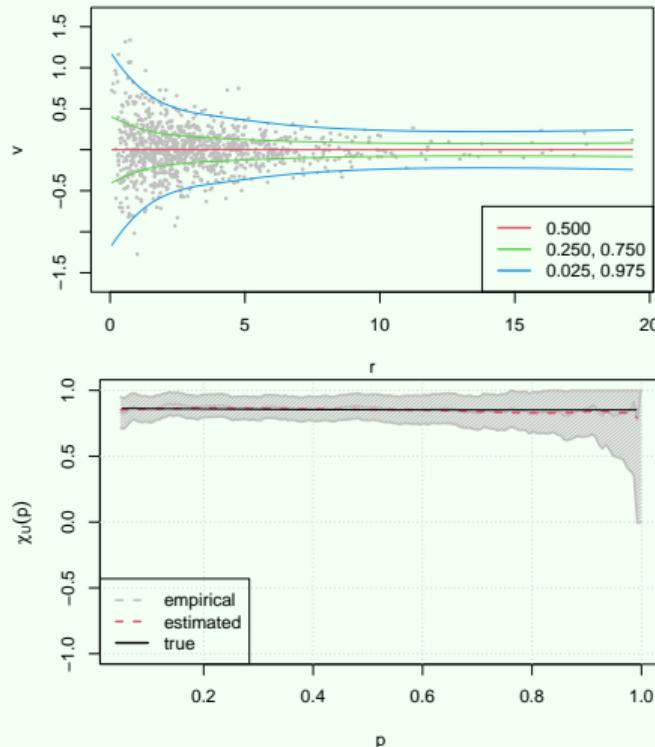
* $\lambda > 0$ smoothing parameter and \mathbf{P} is a positive semi-definite matrix

* **R code**

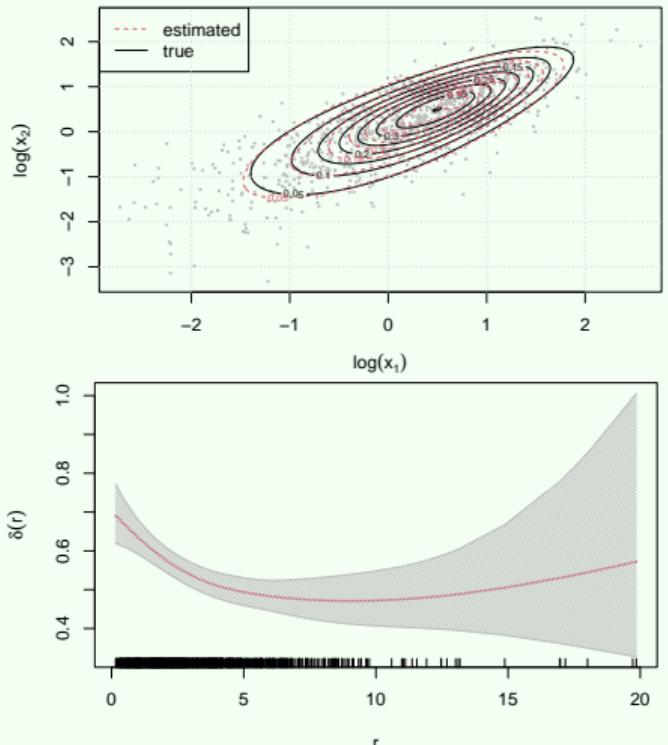
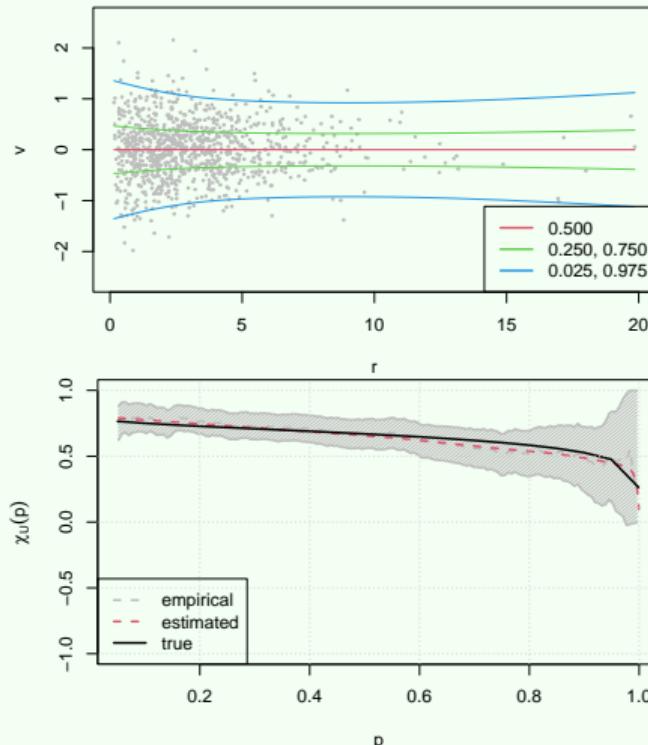
```
mgcv:::gam(list(v~1,~s(r),method = "REML",family=gaulss()))
```

Can we approximate common (bivariate) copula models ?

MRV: SYMMETRIC LOGISTIC COPULA



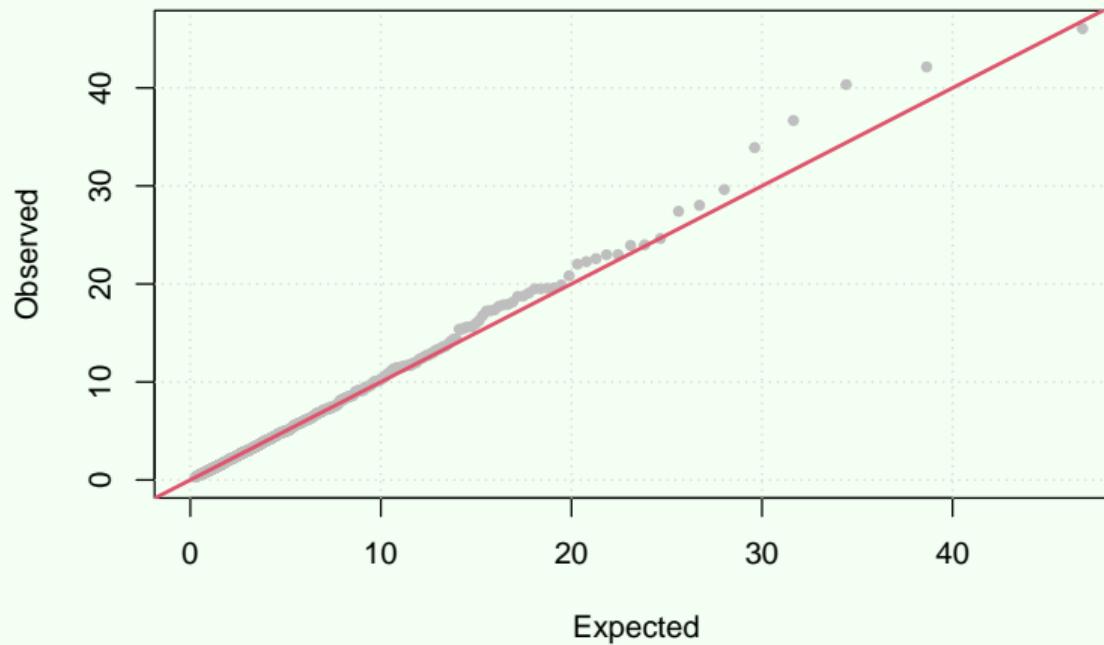
NO MRV: GAUSSIAN COPULA



Coming back to the real data example ...

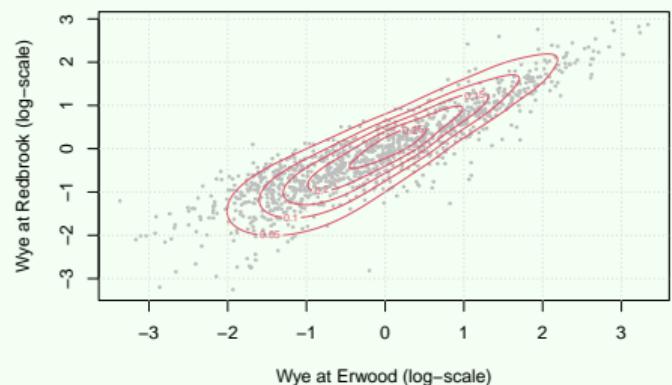
RIVER DISCHARGES: DISTRIBUTION OF $\|X\| = X_1 + X_2$

EGPD: Q-Q plot

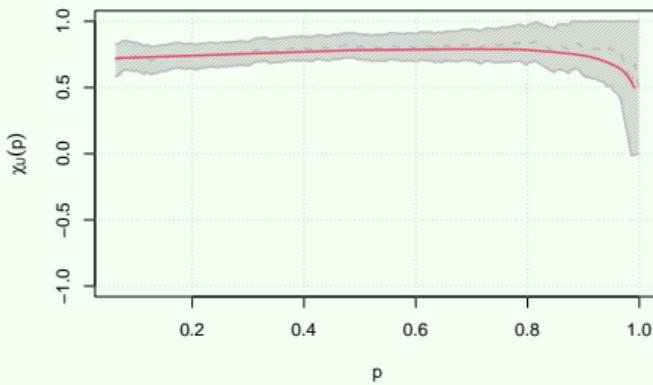


RIVER DISCHARGES: DISTRIBUTION OF $\mathbf{X} = (X_1, X_2)^T$

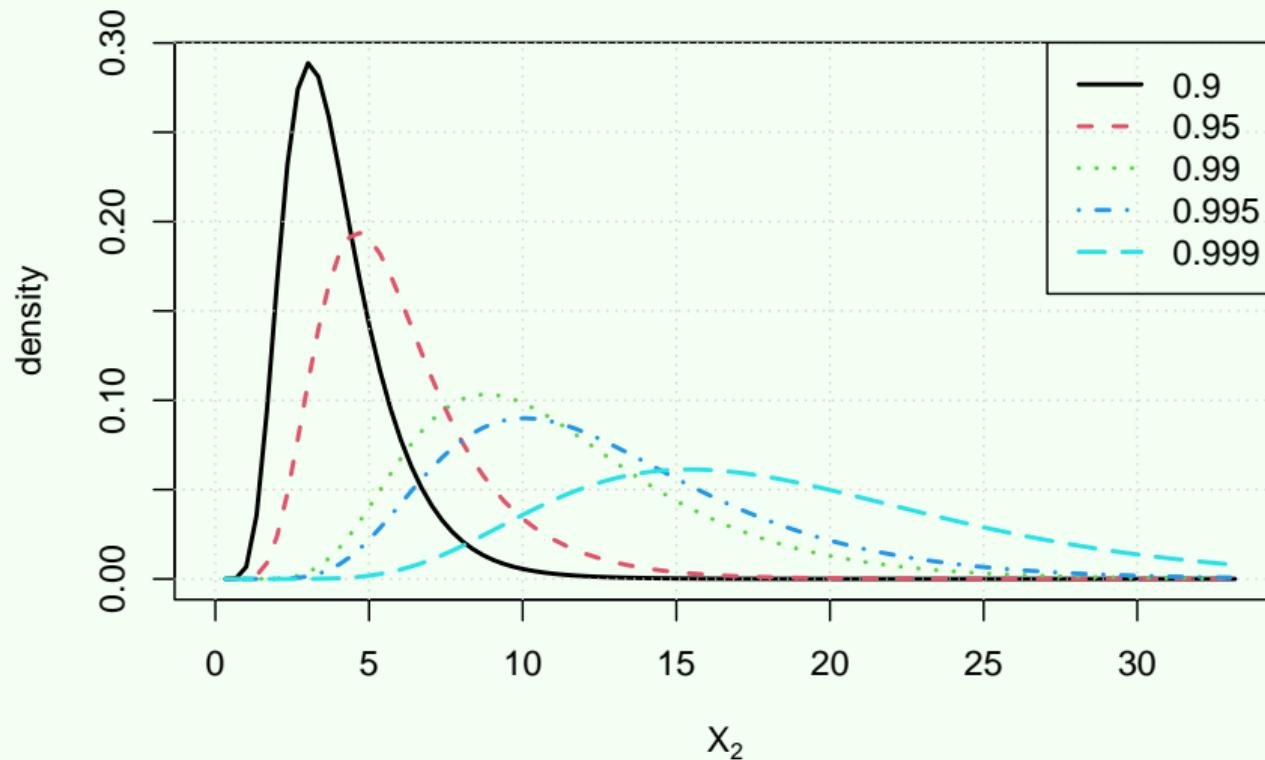
Bivariate density



Goodness of fit



RIVER DISCHARGES: DISTRIBUTION OF $X_2|X_1$



TAKE HOME MESSAGE

A multivariate EGPD exists

RELATED WORKS I

- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve
- ▶ Rainfall measurement are discrete ...
- ▶ ...and most of the time, it is not raining, i.e. zero inflation !

RELATED WORKS I

- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve
- ▶ Rainfall measurement are discrete ...
- ▶ ...and most of the time, it is not raining, i.e. zero inflation !

RELATED WORKS I

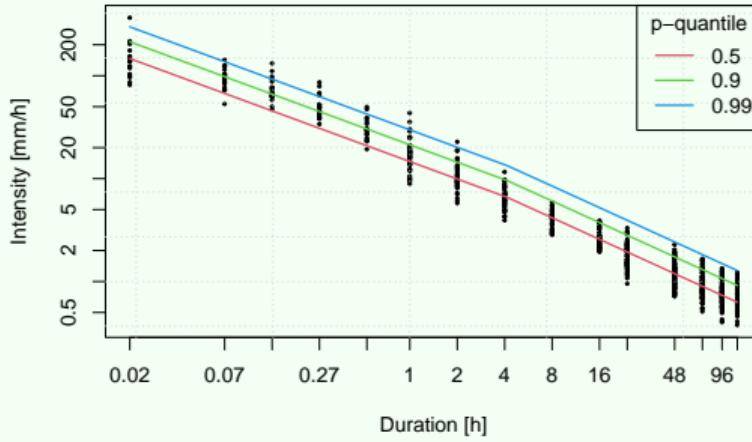
- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve
- ▶ Rainfall measurement are discrete ...
- ▶ ...and most of the time, it is not raining, i.e. zero inflation !

RELATED WORKS I

- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve
- ▶ Rainfall measurement are discrete ...
- ▶ ...and most of the time, it is not raining, i.e. zero inflation !

RELATED WORKS I

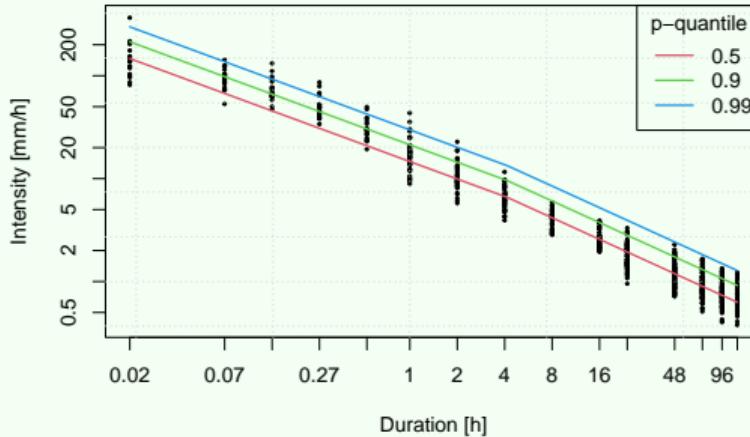
- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve



- ▶ Rainfall measurement are discrete ...

RELATED WORKS I

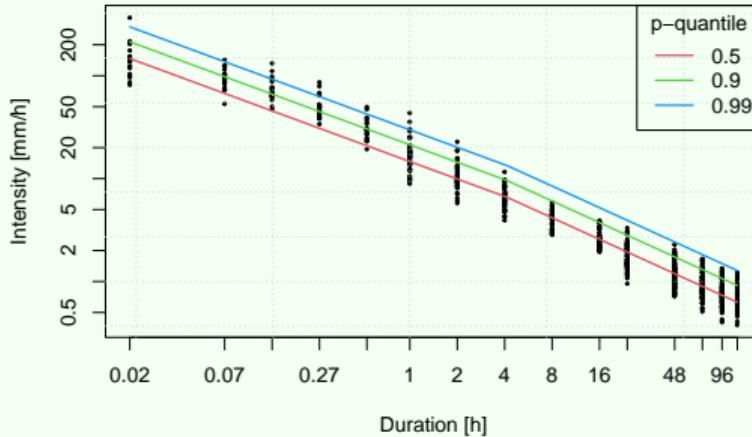
- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve



- ▶ Rainfall measurement are discrete ...

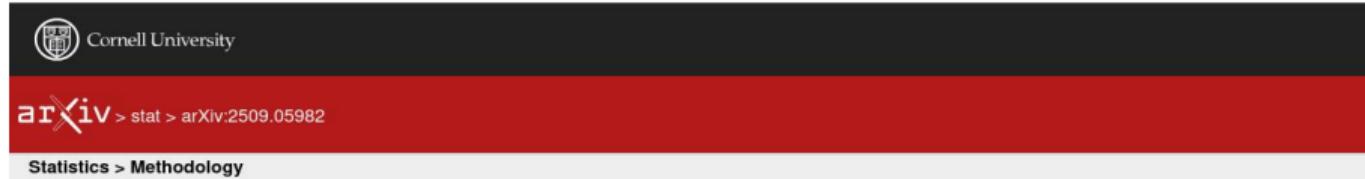
RELATED WORKS I

- ▶ Ailliot, P., **Gaetan C. and Naveau, P.**, (2025+) A parsimonious tail compliant multiscale statistical model for aggregated rainfall, *submitted*.
- ▶ $X_1 + \dots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration d
- ▶ Intensity Duration Frequency (IDF) curve



- ▶ Rainfall measurement are discrete ...

RELATED WORKS II



The image shows a screenshot of an arXiv preprint page. At the top, there is a black bar with the Cornell University logo and the text "Cornell University". Below this is a red bar with the arXiv logo and the identifier "arXiv > stat > arXiv:2509.05982". Underneath is a grey bar with the category "Statistics > Methodology". The main content area has a white background and contains the following text:
[Submitted on 7 Sep 2025]
Joint modeling of low and high extremes using a multivariate extended generalized Pareto distribution
Noura Alotaibi, Matthew Sainsbury-Dale, Philippe Naveau, Carlo Gaetan, Raphaël Huser

- ▶ Weighted sum of latent variables
- ▶ Amortized neural inference approach

RELATED WORKS II

The image is a screenshot of an arXiv preprint page. At the top, there is a black bar with the Cornell University logo and the text "Cornell University". Below this is a red bar with the arXiv logo and the identifier "arXiv > stat > arXiv:2509.05982". The main content area has a light gray header with the text "Statistics > Methodology" and a timestamp "[Submitted on 7 Sep 2025]". The title of the paper is "Joint modeling of low and high extremes using a multivariate extended generalized Pareto distribution". Below the title, the authors are listed as "Noura Alotaibi, Matthew Sainsbury-Dale, Philippe Naveau, Carlo Gaetan, Raphaël Huser".

- ▶ Weighted sum of latent variables
- ▶ Amortized neural inference approach

RELATED WORKS II

The screenshot shows a preprint page from arXiv. At the top, there is a black bar with the Cornell University logo and the text 'Cornell University'. Below this is a red bar with the arXiv logo and the identifier 'arXiv > stat > arXiv:2509.05982'. The main content area has a grey header with the category 'Statistics > Methodology'. Below this, a small note says '[Submitted on 7 Sep 2025]'. The title of the paper is 'Joint modeling of low and high extremes using a multivariate extended generalized Pareto distribution'. The authors listed are Noura Alotaibi, Matthew Sainsbury-Dale, Philippe Naveau, Carlo Gaetan, and Raphaël Huser.

Cornell University

arXiv > stat > arXiv:2509.05982

Statistics > Methodology

[Submitted on 7 Sep 2025]

Joint modeling of low and high extremes using a multivariate extended generalized Pareto distribution

Noura Alotaibi, Matthew Sainsbury-Dale, Philippe Naveau, Carlo Gaetan, Raphaël Huser

- ▶ Weighted sum of latent variables
- ▶ Amortized neural inference approach

Thanks !!!

Merci !!!

Let $\mathbf{X} = \|\mathbf{X}\| \times \mathbf{U}$ be a random vector that satisfies (1) and (2).

We say that \mathbf{X} follows a **multivariate logistic-heteroscedastic EGPD** if the log-ratio of its angular component \mathbf{U} can be expressed, given the radius $\|\mathbf{X}\| = r$, as

$$V_i := \log(U_i/U_d) = \delta(r) Z_i, \text{ for } i = 1, \dots, (d-1), \quad (3)$$

where the $(d-1)$ dimensional vector $\mathbf{Z} = (Z_1, \dots, Z_{d-1})^\top$ is a **zero-mean exchangeable random vector** independent of $\|\mathbf{X}\|$ and $\delta(\cdot)$ is a positive measurable function such that, uniformly on any compact of the real line,

$$\lim_{r \rightarrow 0^+} \delta(r) = \delta_- \text{ and } \lim_{r \rightarrow \infty} \delta(r) = \delta_+, \quad (4)$$

for some finite positive constants δ_- and δ_+ .