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Warm up




GENERALIZED PARETO DISTRIBUTION (GPD)

The distribution of X, when X exceeds a high threshold u, can be approximated by a GPD

1—Q+Ex —uw)/o)TYE forg 70

Hg((X—U)/G): { 1 — exp(—(x — u)/o) for&=0

& shape parameter, o > 0 scale parameter and a+ = max(a, 0).

GPD with heavy tail, £ >0
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Example




EXAMPLE: WEEKLY MAXIMUM SUMMER RIVER DISCHARGES OF WYE RIVER

Map of UK river River discharge 1937—-07-04 / 2023—-09-30
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RIVER DISCHARGES
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RIVER DISCHARGES
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Flood risk managers often focus on the analysis of high river flows



RIVER DISCHARGES
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Farmers may be interested in periods of low river runoffs to prevent food production shortages



RIVER DISCHARGES

0.04
I

low extremes
bulk
high extremes

0.03
I

1)
0.02
L

0.01
I

0.00
I
\
|
|
|
|

Flood risk managers often focus on the analysis of high river flows
Farmers may be interested in periods of low river runoffs to prevent food production shortages

Energy producers in charge of electrical dams can be concerned by the full range of the variable of interest



RIVER DISCHARGES: DEPENDENCE

Sites along the same river basin as nearby measurements can be strongly dependent
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What is an Extended Generalized Pareto Distribution ?

Water Resources Research’ b
COF Pages 2753-2769
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Distribution for positive data !



TWO STRATEGIES TO MODEL JOINTLY EXTREMES AND BULK
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THE THREE INGREDIENTS FOR A EGPD
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THE THREE INGREDIENTS FOR A EGPD

— Bulk —
1/x the GPD parameter of 1/X B(u) a CDF on [0, 1] with a pdf b(u) J & the GPD parameter of X

Pr(X < x) = B(Hg (")

where the pdf b(u) is such that

0<b(0) <0 and 0<b(l)<oo
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THE THREE INGREDIENTS FOR A EGPD

— Bulk —
1/x the GPD parameter of 1/X B(u) a CDF on [0, 1] with a pdf b(u) J & the GPD parameter of X

where the pdf b(u) is such that

0 <b(0)

< 0o and 0<b(1) <o

Pr(X < x) = B(Hg (")

Scale parameter ¢ is absorbed in B(u)
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EGPD EXAMPLES

EGPD density
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TAKE HOME MESSAGE

X ~ EGPD(k, &, B)
1/X ~ EGPD(1/%, 1/k, B)
B() — B(-)

The inverse 1/X of a EGPD r.v. is still an EGPD

13



LEMMA

X ~ EGPD(x, £, B), < Pr(X < x) = B(Hg (x)")

then
1/X ~ EGPD(1/&,1/x,B), < Pr(1/X < X) = B(Hl,K()?)”‘f)
with
bo)=«k £Y4 (1)  and  b(1) =& b(0)




A multivariate EGPD
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POLAR EXTREMES COORDINATES OF X = (X1, X3)

X=|X||xU

pseudo-radius ||X|| = X1 + X5 and pseudo-angle U = (X1/||X||, X2/||X||)

X2
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X=|X||xU

Y=|¥|xL

Upper extreme’s representation
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TAKE HOME MESSAGE

X =(X1,...,Xy) with X; ~ EGPD(k, &,B) foralli=1,...,d.

Distribution of || X|| = Xq + -

..+)(d

The sum of dependent EGPDs is still an EGPD

The upper tail parameter, &, remains unchanged from marginal behaviors to || X||, while the lower tail behavior

can be have a changing «.

B(-) = Bql(")
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PROPOSITION: DISTRIBUTION OF || X|| = Xy +-- - + Xy

Let be X = (X1, ...,Xy) with X; ~ EGPD(k, &, B) foralli=1,...,d.
If there exist three positive and finite constants, a, c— and ¢+ such that

Pr(lIX|>x) _
X—00 PI’(X,'>X) B (l)
and
Pr(X| < _ 2

x—0* [Pr(X; < x)]@

then there exists a CDF By such that ||X|| ~ EGPD( ak, &, By) with

by(0) = c— b(0)? and by(1) = ¢+ b(1)/a.

Moreover |Y| = 1/||X|| is also EGPD(1/£, 1/(ak), By)
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MULTIVARIATE REGULAR VARIATION DISTRIBUTION
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||X|| independent of U when ||X|| gets large

Pr(U e A| ||X|| > r) has a non-degenerate limitasr — oo, i.e.
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MULTIVARIATE EGPD

The main differences with classical EVT modelling are that
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MULTIVARIATE EGPD

The main differences with classical EVT modelling are that
Our interest is not only on the upper extremal behaviour of X, but also its lower extremal behaviour

The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small
and large values of || X]|

In contrast to classical regular variation principles, the radial component is not necessarily assumed
independent of the angular component

In particular, the degree of dependence will change according to the value ||X||

21



BIVARIATE EGPD X = (X1, X5), WITH FOUR INGREDIENTS

Xl = ||X||U1 and X2 = HXHUZ = ||X||(l — Ul)
[IX|| ~ EGPD(x, &, By)

Bulk :
High extremes
By a CDF function on [0, 1] (with
kg the GPD parameter of 1/||X|| PDF by) & the GPD parameter of || X||
d

X
? 4 U=Xx/|x|
/
N /', Bivariate conditional model
N \/: o Ul d
AN _ lo X||=r| =0(r)Z
N o s
/ ENg
I AN with Z standardized Gaussian L ||X||
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INTERPRETATION

Bivariate conditional model

with Z standardized Gaussian L || X]|
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INTERPRETATION

Bivariate conditional model

Jrog (2 )|t =] £ stz

with Z standardized Gaussian L || X]|

If 5(r) remains constant for large values of r, then we are in the multivariate regular variation framework
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Bivariate conditional model

Jrog (2 )|t =] £ stz

with Z standardized Gaussian L || X]|

If 5(r) remains constant for large values of r, then we are in the multivariate regular variation framework

We can specify other conditional distribution
Un|lIX| = r ~ £(-55(r))

under the constraint E (U1 |||X|| = r) = 1/2
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INTERPRETATION

Bivariate conditional model

Jrog (2 )|t =] £ stz

with Z standardized Gaussian L || X]|

If 5(r) remains constant for large values of r, then we are in the multivariate regular variation framework

We can specify other conditional distribution
Un|lIX| = r ~ £(-55(r))

under the constraint E (U1 |||X|| = r) = 1/2

Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!
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FLEXIBILITY (1)
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FLEXIBILITY (11)
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Does this work in practice?
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ESTIMATION IN TWO STEPS: FIRST STEP

Transform x; = (x,-,l,x,',z)T intor; =X;1 + X2
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ESTIMATION IN TWO STEPS: FIRST STEP
Transform x; = (x,-,l,x,',z)T intor; =X;1 + X2
Maximize the EGPD log-likelihood

lplx, &) = 3 {log i + (x — 1) log H (1) +log h (1) + log b(He )"} }

i=1
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ESTIMATION IN TWO STEPS: FIRST STEP
Transform x; = (x,-,l,x,',z)T intor; =X;1 + X2
Maximize the EGPD log-likelihood

lplx, &) = 3 {log i + (x — 1) log H (1) +log h (1) + log b(He )"} }

i=1
Density b(u) is approximated with Bernstein polynomials
N m
b(u)=m Z Wi m Brm—k+1(U)
k=1

with B () = ()u’ (1 — uy =" and wy y, = Bal(k/m) — Ba((k — 1)/m) [Bn ECDF of b; = He (

|xil)*]
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ESTIMATION IN TWO STEPS: FIRST STEP
Transform x; = (x,-,l,x,',z)T intor; =X;1 + X2
Maximize the EGPD log-likelihood

lplx, &) = 3 {log i + (x — 1) log H (1) +log h (1) + log b(He )"} }
i=1

Density b(u) is approximated with Bernstein polynomials

m
b(u)=m Z Wi m Brm—k+1(U)
k=1
with B () = ()u’ (1 — uy =" and wy y, = Bal(k/m) — Ba((k — 1)/m) [Bn ECDF of b; = He (
Ad-hoc R program but simple to write!
evd::dgpd(x = x,loc = 0,scale = 1,shape

|xil)*]

x1)

evd::pgpd(x = x,loc = 0,scale = 1,shape xi)
ecdf(b)

dbeta(u,shapel = i, shape2 = j-i+1)



ESTIMATION IN TWO STEPS: SECOND STEP

Transform x; = (x,;l,x,',z)T into v; = log(x; 1) — log(x; )

28



ESTIMATION IN TWO STEPS: SECOND STEP

Transform x; = (x,;l,x,',z)T into v; = log(x; 1) — log(x; )

Maximize the penalized Gaussian log-likelihood

n

PLy(y) == { log(8(r})) +0.5
i=1
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ESTIMATION IN TWO STEPS: SECOND STEP

Transform x; = (x,;l,x,',z)T into v; = log(x; 1) — log(x; )

Maximize the penalized Gaussian log-likelihood

n

PLy(y) == { log(8(r})) +0.5
i=1

V, T
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Linear combination of K basis functions S;(r) (cubic splines)
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ESTIMATION IN TWO STEPS: SECOND STEP

Transform x; = (x,;l,x,',z)T into v; = log(x; 1) — log(x; )

Maximize the penalized Gaussian log-likelihood

n

PLUY) = = 3 4 log(s(r)) +05 | 5
i=1 !

Linear combination of K basis functions S;(r) (cubic splines)

K
10g5(f)=Yo+ZYj5j(f), Y=0o0,--vk)
1

A > 0 smoothing parameter and P is a positive semi-definite matrix

+ ?\yTPy.
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ESTIMATION IN TWO STEPS: SECOND STEP

Transform x; = (x,;l,x,',z)T into v; = log(x; 1) — log(x; )

Maximize the penalized Gaussian log-likelihood

2
n
%
PLU(Y) = =3 4 1ogld(r) +05 | 5| Ay Py.
i=1 !
Linear combination of K basis functions S;(r) (cubic splines)
K
10g5(f)=Yo+ZYj5j(f), Y=0o0,--vk)
j=1

A > 0 smoothing parameter and P is a positive semi-definite matrix
R code
mgcv::gam(Llist(v~1l,~s(r),method = "REML",family=gaulss())
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Can we approximate common (bivariate) copula models ?
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MRV: SYMMETRIC LOGISTIC COPULA
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NO MRV: GAUSSIAN COPULA
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Coming back to the real data example ...
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RIVER DISCHARGES: DISTRIBUTION OF || X|| = X1 + X3
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RIVER DISCHARGES: DISTRIBUTION OF X = (X7, X5)

Bivariate density Goodness of fit
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RIVER DISCHARGES: DISTRIBUTION OF X5|X1

density

0.10 0.20 0.30

0.00

— 0.9

=.=:...0.95
0.99

-=- 0.995
0.999

35



TAKE HOME MESSAGE

A multivariate EGPD exists
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LAST SLIDE

Thanks !!!

Merci !
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MULTIVARIATE LOGISTIC-HETEROSCEDASTIC EGPD

Let X = ||X|| X U be a random vector that satisfies (1) and (2).
We say that X follows a multivariate logistic-heteroscedastic EGPD if the log-ratio of its angular component
U can be expressed, given the radius ||X|| = r, as

Vi == log(Ui/Uyg) = 8(r) Z;, fori=1,...,(d — 1), (3)

where the (d-1) dimensional vector Z = (73, . .. ,Za,_l)T is a zero-mean exchangeable random vector
independent of ||X|| and &(-) is a positive measurable function such that, uniformly on any compact of the
real line,

lim 6(r) = d_and lim 6(r) = 6+, (4)

r—0* r—oo

for some finite positive constants 5_ and d-+.
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