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Warm up

3



GENERALIZED PARETO DISTRIBUTION (GPD)

The distribution of X, when X exceeds a high threshold u, can be approximated by a GPD

Hξ((x − u)/σ) =

{
1− (1 + ξ(x − u)/σ)−1/ξ+ for ξ ̸= 0
1− exp(−(x − u)/σ) for ξ = 0

ξ shape parameter, σ > 0 scale parameter and a+ = max(a, 0).
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Example
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EXAMPLE: WEEKLY MAXIMUM SUMMER RIVER DISCHARGES OF WYE RIVER
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RIVER DISCHARGES
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▶ Flood riskmanagers often focus on the analysis of high river flows

▶ Farmersmay be interested in periods of low river runoffs to prevent food production shortages

▶ Energy producers in charge of electrical dams can be concerned by the full range of the variable of interest
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RIVER DISCHARGES: DEPENDENCE

Sites along the same river basin as nearby measurements can be strongly dependent
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What is an Extended Generalized Pareto Distribution ?

X Distribution for positive data !
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TWO STRATEGIES TO MODEL JOINTLY EXTREMES AND BULK
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THE THREE INGREDIENTS FOR A EGPD

High extremes
ξ the GPD parameter of X
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Bulk
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THE THREE INGREDIENTS FOR A EGPD

Low extremes
1/κ the GPD parameter of 1/X

Bulk
B(u) a CDF on [0, 1] with a pdf b(u)

High extremes
ξ the GPD parameter of X

Pr(X ≤ x) = B(Hξ(x)
κ)

where the pdf b(u) is such that

0 < b(0) <∞ and 0 < b(1) <∞

▶ Scale parameter σ is absorbed in B(u)
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EGPD EXAMPLES

b(u) EGPD density
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TAKE HOME MESSAGE

▶ X ∼ EGPD(κ, ξ, B)

▶ 1/X ∼ EGPD(1/ξ, 1/κ, B̃)

▶ B(·)→ B̃(·)

The inverse 1/X of a EGPD r.v. is still an EGPD
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LEMMA

If
X ∼ EGPD(κ, ξ, B), ⇔ Pr(X ≤ x) = B(Hξ(x)

κ)

then
1/X ∼ EGPD(1/ξ, 1/κ, B̃), ⇔ Pr(1/X ≤ x̃) = B̃(H1/κ(x̃)

1/ξ)

with
b̃(0) = κ ξ1/ξ b(1) and b̃(1) = ξ b(0)
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Amultivariate EGPD
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POLAR EXTREMES COORDINATES OF X = (X1, X2)

X = ∥X∥ × U
pseudo-radius ∥X∥ = X1 + X2 and pseudo-angle U = (X1/∥X∥, X2/∥X∥)

U ∈ A, ∥X∥ > r

0 1 r X1

X2

A
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X = ∥X∥ × U Y = |Y | × L

Upper extreme’s representation

Radius ∥X∥ = X1 + X2 and U = X
∥X∥

U ∈ A, ∥X∥ > r

0 1 r1/s X1

X2

A

Lower extreme’s representation

|Y | = 1
∥1/Y∥ and L =

Y
|Y |

L ∈ B, |Y | > s

0 1 s1/r Y1 = 1/X1

Y2 = 1/X2

B
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TAKE HOME MESSAGE

▶ X = (X1, . . . , Xd) with Xi ∼ EGPD(κ, ξ, B) for all i = 1, . . . , d.

▶ Distribution of ∥X∥ = X1 + · · · + Xd

The sum of dependent EGPDs is still an EGPD

▶ The upper tail parameter, ξ, remains unchanged frommarginal behaviors to ∥X∥, while the lower tail behavior
can be have a changing κ.

▶ B(·)→ Bd(·)
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PROPOSITION: DISTRIBUTION OF ∥X∥ = X1 + · · · + Xd

Let be X = (X1, . . . , Xd) with Xi ∼ EGPD(κ, ξ, B) for all i = 1, . . . , d.
If there exist three positive and finite constants, a, c− and c+ such that

lim
x→∞

Pr(∥X∥ > x)
Pr(Xi > x)

= c+ (1)

and
lim
x→0+

Pr(∥X∥ ≤ x)
[Pr(Xi ≤ x)]a

= c−, (2)

then there exists a CDF Bd such that ∥X∥ ∼ EGPD( aκ, ξ, Bd) with

bd(0) = c− b(0)a and bd(1) = c+ b(1)/a.

▶ Moreover |Y | = 1/∥X∥ is also EGPD(1/ξ, 1/(aκ), B̃d)
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MULTIVARIATE REGULAR VARIATION DISTRIBUTION

U ∈ A, ∥X∥ > r

0 1 r X1

X2

A

X = ∥X∥ × U

▶ ∥X∥ independent of Uwhen ∥X∥ gets large
▶ Pr(U ∈ A | ∥X∥ > r) has a non-degenerate limit as r → ∞, i.e.

lim
r→∞

Pr(U ∈ A | ∥X∥ > r) = Pr(U ∈ A)
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MULTIVARIATE EGPD

Themain differences with classical EVTmodelling are that

1. Our interest is not only on the upper extremal behaviour of X, but also its lower extremal behaviour

2. The radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small
and large values of ∥X∥

3. In contrast to classical regular variation principles, the radial component is not necessarily assumed
independent of the angular component

4. In particular, the degree of dependence will change according to the value ∥X∥
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BIVARIATE EGPD X = (X1, X2), WITH FOUR INGREDIENTS

X1 = ∥X∥U1 and X2 = ∥X∥U2 = ∥X∥(1− U1)

∥X∥ ∼ EGPD(κ, ξ, Bd)

Low extremes
κd the GPD parameter of 1/∥X∥

Bulk
Bd a CDF function on [0, 1] (with
PDF bd)

High extremes
ξ the GPD parameter of ∥X∥

0 r X1

X2

A

U = X/∥X∥

Bivariate conditional model[
log

(
U1

1− U1

)∣∣∣∣∥X∥ = r] d= δ(r)Z

with Z standardized Gaussian ⊥ ∥X∥
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INTERPRETATION

Bivariate conditional model [
log

(
U1

1− U1

)∣∣∣∣∥X∥ = r] d= δ(r)Z

with Z standardized Gaussian ⊥ ∥X∥

▶ If δ(r) remains constant for large values of r, then we are in the multivariate regular variation framework

▶ We can specify other conditional distribution

U1|∥X∥ = r ∼ f (·; δ(r))

under the constraint E
(
U1|∥X∥ = r

)
= 1/2

▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!
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FLEXIBILITY (I)
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FLEXIBILITY (II)
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Does this work in practice?
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ESTIMATION IN TWO STEPS: FIRST STEP
Transform xi = (xi,1, xi,2)T into ri = xi,1 + xi,2
1. Maximize the EGPD log-likelihood

lR(κ, ξ) =
n∑
i=1

{
log κ + (κ− 1) logHξ (ri) + log hξ (ri) + log b̂(Hξ(ri)

κ)
}
.

▶ Density b(u) is approximated with Bernstein polynomials

b̂(u) = m
m∑
k=1

ωk,mβk,m−k+1(u)

with βi, j(u) =
( j
i
)
ui (1− u) j−i andωk,m = Bn(k/m)− Bn((k − 1)/m) [Bn ECDF of bi = Hξ(∥xi∥)κ]

▶ Ad-hoc R program but simple to write!
evd::dgpd(x = x,loc = 0,scale = 1,shape = xi)
evd::pgpd(x = x,loc = 0,scale = 1,shape = xi)
ecdf(b)
dbeta(u,shape1 = i, shape2 = j-i+1)
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ESTIMATION IN TWO STEPS: SECOND STEP

Transform xi = (xi,1, xi,2)T into vi = log(xi,1)− log(xi,2)

2. Maximize the penalized Gaussian log-likelihood

PLV (γ) = −
n∑
i=1

log(δ(ri)) + 0.5
 vi

δ(ri)

2
 + λγ⊤Pγ.

* Linear combination of K basis functions S j(r) (cubic splines)

log δ(r) = γ0 +
K∑
j=1

γ jS j(r), γ = (γ0, . . . ,γK)⊤

* λ > 0 smoothing parameter and P is a positive semi-definite matrix
* R code
mgcv::gam(list(v~1,~s(r),method = "REML",family=gaulss())
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ESTIMATION IN TWO STEPS: SECOND STEP

Transform xi = (xi,1, xi,2)T into vi = log(xi,1)− log(xi,2)

2. Maximize the penalized Gaussian log-likelihood

PLV (γ) = −
n∑
i=1

log(δ(ri)) + 0.5
 vi

δ(ri)

2
 + λγ⊤Pγ.

* Linear combination of K basis functions S j(r) (cubic splines)

log δ(r) = γ0 +
K∑
j=1

γ jS j(r), γ = (γ0, . . . ,γK)⊤

* λ > 0 smoothing parameter and P is a positive semi-definite matrix
* R code
mgcv::gam(list(v~1,~s(r),method = "REML",family=gaulss())
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Can we approximate common (bivariate) copula models ?
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MRV: SYMMETRIC LOGISTIC COPULA
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NO MRV: GAUSSIAN COPULA
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Coming back to the real data example ...
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RIVER DISCHARGES: DISTRIBUTION OF ∥X∥ = X1 + X2
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RIVER DISCHARGES: DISTRIBUTION OF X = (X1, X2)T

Bivariate density
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RIVER DISCHARGES: DISTRIBUTION OF X2|X1

0 5 10 15 20 25 30

0.
00

0.
10

0.
20

0.
30

X2

de
ns

ity
0.9
0.95
0.99
0.995
0.999

35



TAKE HOME MESSAGE

Amultivariate EGPD exists
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RELATED WORKS I

▶ Ailliot, P., Gaetan C. and Naveau, P., (2025+) A parsimonious tail compliant multiscale statistical model for
aggregated rainfall, submitted.

▶ X1 + . . . + Xd ∼ EGPD(κ, ξ, Bd)

▶ Duration d

▶ Intensity Duration Frequency (IDF) curve

▶ Rainfall measurement are discrete ...

▶ ...andmost of the time, it is not raining, i.e. zero inflation !
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RELATED WORKS II

▶ Weighted sum of latent variables

▶ Amortized neural inference approach
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LAST SLIDE

Thanks !!!

Merci !!!

39



MULTIVARIATE LOGISTIC-HETEROSCEDASTIC EGPD

Let X = ∥X∥ × U be a random vector that satisfies (1) and (2).
We say that X follows amultivariate logistic-heteroscedastic EGPD if the log-ratio of its angular component
U can be expressed, given the radius ∥X∥ = r, as

Vi := log(Ui/Ud) = δ(r) Zi, for i = 1, . . . , (d − 1), (3)

where the (d-1) dimensional vector Z = (Z1, . . . , Zd−1)⊤ is a zero-mean exchangeable random vector
independent of ∥X∥ and δ(·) is a positive measurable function such that, uniformly on any compact of the
real line,

lim
r→0+

δ(r) = δ− and lim
r→∞

δ(r) = δ+, (4)

for some finite positive constants δ− and δ+.
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